Results for: "Psych"

Attempts to [match] the given pattern at the beginning of the [target substring]; does not modify the [positions].

If the match succeeds:

scanner = StringScanner.new('foobarbaz')
scanner.pos = 3
scanner.match?(/bar/) => 3
put_match_values(scanner)
# Basic match values:
#   matched?:       true
#   matched_size:   3
#   pre_match:      "foo"
#   matched  :      "bar"
#   post_match:     "baz"
# Captured match values:
#   size:           1
#   captures:       []
#   named_captures: {}
#   values_at:      ["bar", nil]
#   []:
#     [0]:          "bar"
#     [1]:          nil
put_situation(scanner)
# Situation:
#   pos:       3
#   charpos:   3
#   rest:      "barbaz"
#   rest_size: 6

If the match fails:

scanner.match?(/nope/)         # => nil
match_values_cleared?(scanner) # => true

Attempts to [match] the given pattern at the beginning of the [target substring]; does not modify the [positions].

If the match succeeds:

scanner = StringScanner.new('foobarbaz')
scanner.pos = 3
scanner.check('bar') # => "bar"
put_match_values(scanner)
# Basic match values:
#   matched?:       true
#   matched_size:   3
#   pre_match:      "foo"
#   matched  :      "bar"
#   post_match:     "baz"
# Captured match values:
#   size:           1
#   captures:       []
#   named_captures: {}
#   values_at:      ["bar", nil]
#   []:
#     [0]:          "bar"
#     [1]:          nil
# => 0..1
put_situation(scanner)
# Situation:
#   pos:       3
#   charpos:   3
#   rest:      "barbaz"
#   rest_size: 6

If the match fails:

scanner.check(/nope/)          # => nil
match_values_cleared?(scanner) # => true
No documentation available

Returns true of the most recent [match attempt] was successful, false otherwise; see [Basic Matched Values]:

scanner = StringScanner.new('foobarbaz')
scanner.matched?       # => false
scanner.pos = 3
scanner.exist?(/baz/)  # => 6
scanner.matched?       # => true
scanner.exist?(/nope/) # => nil
scanner.matched?       # => false

Returns the matched substring from the most recent [match] attempt if it was successful, or nil otherwise; see [Basic Matched Values]:

scanner = StringScanner.new('foobarbaz')
scanner.matched        # => nil
scanner.pos = 3
scanner.match?(/bar/)  # => 3
scanner.matched        # => "bar"
scanner.match?(/nope/) # => nil
scanner.matched        # => nil

Iterates over each item of OLE collection which has IEnumVARIANT interface.

excel = WIN32OLE.new('Excel.Application')
book = excel.workbooks.add
sheets = book.worksheets(1)
cells = sheets.cells("A1:A5")
cells.each do |cell|
  cell.value = 10
end

Returns the value for the given key, if found.

h = {foo: 0, bar: 1, baz: 2}
h.fetch(:bar) # => 1

If key is not found and no block was given, returns default_value:

{}.fetch(:nosuch, :default) # => :default

If key is not found and a block was given, yields key to the block and returns the block’s return value:

{}.fetch(:nosuch) {|key| "No key #{key}"} # => "No key nosuch"

Raises KeyError if neither default_value nor a block was given.

Note that this method does not use the values of either default or default_proc.

Calls the given block with each key-value pair; returns self:

h = {foo: 0, bar: 1, baz: 2}
h.each_pair {|key, value| puts "#{key}: #{value}"} # => {:foo=>0, :bar=>1, :baz=>2}

Output:

foo: 0
bar: 1
baz: 2

Returns a new Enumerator if no block given:

h = {foo: 0, bar: 1, baz: 2}
e = h.each_pair # => #<Enumerator: {:foo=>0, :bar=>1, :baz=>2}:each_pair>
h1 = e.each {|key, value| puts "#{key}: #{value}"}
h1 # => {:foo=>0, :bar=>1, :baz=>2}

Output:

foo: 0
bar: 1
baz: 2

If name is the name of an environment variable, returns its value:

ENV['foo'] = '0'
ENV.fetch('foo') # => '0'

Otherwise if a block is given (but not a default value), yields name to the block and returns the block’s return value:

ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string

Otherwise if a default value is given (but not a block), returns the default value:

ENV.delete('foo')
ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string

If the environment variable does not exist and both default and block are given, issues a warning (“warning: block supersedes default value argument”), yields name to the block, and returns the block’s return value:

ENV.fetch('foo', :default) { |name| :block_return } # => :block_return

Raises KeyError if name is valid, but not found, and neither default value nor block is given:

ENV.fetch('foo') # Raises KeyError (key not found: "foo")

Raises an exception if name is invalid. See Invalid Names and Values.

Yields each environment variable name and its value as a 2-element Array:

h = {}
ENV.each_pair { |name, value| h[name] = value } # => ENV
h # => {"bar"=>"1", "foo"=>"0"}

Returns an Enumerator if no block given:

h = {}
e = ENV.each_pair # => #<Enumerator: {"bar"=>"1", "foo"=>"0"}:each_pair>
e.each { |name, value| h[name] = value } # => ENV
h # => {"bar"=>"1", "foo"=>"0"}

Returns an enumerator which iterates over each line (separated by sep, which defaults to your platform’s newline character) of each file in ARGV. If a block is supplied, each line in turn will be yielded to the block, otherwise an enumerator is returned. The optional limit argument is an Integer specifying the maximum length of each line; longer lines will be split according to this limit.

This method allows you to treat the files supplied on the command line as a single file consisting of the concatenation of each named file. After the last line of the first file has been returned, the first line of the second file is returned. The ARGF.filename and ARGF.lineno methods can be used to determine the filename of the current line and line number of the whole input, respectively.

For example, the following code prints out each line of each named file prefixed with its line number, displaying the filename once per file:

ARGF.each_line do |line|
  puts ARGF.filename if ARGF.file.lineno == 1
  puts "#{ARGF.file.lineno}: #{line}"
end

While the following code prints only the first file’s name at first, and the contents with line number counted through all named files.

ARGF.each_line do |line|
  puts ARGF.filename if ARGF.lineno == 1
  puts "#{ARGF.lineno}: #{line}"
end

Reads the next character from ARGF and returns it as a String. Raises an EOFError after the last character of the last file has been read.

For example:

$ echo "foo" > file
$ ruby argf.rb file

ARGF.readchar  #=> "f"
ARGF.readchar  #=> "o"
ARGF.readchar  #=> "o"
ARGF.readchar  #=> "\n"
ARGF.readchar  #=> end of file reached (EOFError)

Returns the matched substring corresponding to the given argument.

When non-negative argument n is given, returns the matched substring for the nth match:

m = /(.)(.)(\d+)(\d)(\w)?/.match("THX1138.")
# => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8" 5:nil>
m.match(0) # => "HX1138"
m.match(4) # => "8"
m.match(5) # => nil

When string or symbol argument name is given, returns the matched substring for the given name:

m = /(?<foo>.)(.)(?<bar>.+)/.match("hoge")
# => #<MatchData "hoge" foo:"h" bar:"ge">
m.match('foo') # => "h"
m.match(:bar)  # => "ge"

Like [], except that it accepts a default value for the store. If the key does not exist:

Raises an exception if called outside a transaction block.

Returns a fiber-local for the given key. If the key can’t be found, there are several options: With no other arguments, it will raise a KeyError exception; if default is given, then that will be returned; if the optional code block is specified, then that will be run and its result returned. See Thread#[] and Hash#fetch.

Invokes Posix system call syscall(2), which calls a specified function.

Calls the operating system function identified by integer_callno; returns the result of the function or raises SystemCallError if it failed. The effect of the call is platform-dependent. The arguments and returned value are platform-dependent.

For each of arguments: if it is an integer, it is passed directly; if it is a string, it is interpreted as a binary sequence of bytes. There may be as many as nine such arguments.

Arguments integer_callno and argument, as well as the returned value, are platform-dependent.

Note: Method syscall is essentially unsafe and unportable. The DL (Fiddle) library is preferred for safer and a bit more portable programming.

Not implemented on all platforms.

Creates a new child process by doing one of the following in that process:

This method has potential security vulnerabilities if called with untrusted input; see Command Injection.

Returns:

Raises an exception (instead of returning false or nil) if keyword argument exception is set to true.

Assigns the command’s error status to $?.

The new process is created using the system system call; it may inherit some of its environment from the calling program (possibly including open file descriptors).

Argument env, if given, is a hash that affects ENV for the new process; see Execution Environment.

Argument options is a hash of options for the new process; see Execution Options.

The first required argument is one of the following:

Argument command_line

String argument command_line is a command line to be passed to a shell; it must begin with a shell reserved word, begin with a special built-in, or contain meta characters:

system('if true; then echo "Foo"; fi')          # => true  # Shell reserved word.
system('exit')                                  # => true  # Built-in.
system('date > /tmp/date.tmp')                  # => true  # Contains meta character.
system('date > /nop/date.tmp')                  # => false
system('date > /nop/date.tmp', exception: true) # Raises RuntimeError.

Assigns the command’s error status to $?:

system('exit')                             # => true  # Built-in.
$?                                         # => #<Process::Status: pid 640610 exit 0>
system('date > /nop/date.tmp')             # => false
$?                                         # => #<Process::Status: pid 640742 exit 2>

The command line may also contain arguments and options for the command:

system('echo "Foo"') # => true

Output:

Foo

See Execution Shell for details about the shell.

Raises an exception if the new process could not execute.

Argument exe_path

Argument exe_path is one of the following:

Example:

system('/usr/bin/date') # => true # Path to date on Unix-style system.
system('foo')           # => nil  # Command failed.

Output:

Mon Aug 28 11:43:10 AM CDT 2023

Assigns the command’s error status to $?:

system('/usr/bin/date') # => true
$?                      # => #<Process::Status: pid 645605 exit 0>
system('foo')           # => nil
$?                      # => #<Process::Status: pid 645608 exit 127>

Ruby invokes the executable directly. This form does not use the shell; see Arguments args for caveats.

system('doesnt_exist') # => nil

If one or more args is given, each is an argument or option to be passed to the executable:

system('echo', 'C*')             # => true
system('echo', 'hello', 'world') # => true

Output:

C*
hello world

Raises an exception if the new process could not execute.

Equivalent to ($_.dup).chop!, except nil is never returned. See String#chop!. Available only when -p/-n command line option specified.

Equivalent to $_ = $_.chomp(string). See String#chomp. Available only when -p/-n command line option specified.

catch executes its block. If throw is not called, the block executes normally, and catch returns the value of the last expression evaluated.

catch(1) { 123 }            # => 123

If throw(tag2, val) is called, Ruby searches up its stack for a catch block whose tag has the same object_id as tag2. When found, the block stops executing and returns val (or nil if no second argument was given to throw).

catch(1) { throw(1, 456) }  # => 456
catch(1) { throw(1) }       # => nil

When tag is passed as the first argument, catch yields it as the parameter of the block.

catch(1) {|x| x + 2 }       # => 3

When no tag is given, catch yields a new unique object (as from Object.new) as the block parameter. This object can then be used as the argument to throw, and will match the correct catch block.

catch do |obj_A|
  catch do |obj_B|
    throw(obj_B, 123)
    puts "This puts is not reached"
  end

  puts "This puts is displayed"
  456
end

# => 456

catch do |obj_A|
  catch do |obj_B|
    throw(obj_A, 123)
    puts "This puts is still not reached"
  end

  puts "Now this puts is also not reached"
  456
end

# => 123

When called with positive integer argument n and a block, calls the block with each element, then does so again, until it has done so n times; returns nil:

a = []
(1..4).cycle(3) {|element| a.push(element) } # => nil
a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
a = []
('a'..'d').cycle(2) {|element| a.push(element) }
a # => ["a", "b", "c", "d", "a", "b", "c", "d"]
a = []
{foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) }
a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]]

If count is zero or negative, does not call the block.

When called with a block and n is nil, cycles forever.

When no block is given, returns an Enumerator.

Each element in the returned enumerator is a 2-element array consisting of:

So that:

Example:

e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
# The enumerator elements.
e.next # => [0, [0, 1, 2]]
e.next # => [1, [3, 4, 5]]
e.next # => [2, [6, 7, 8]]
e.next # => [3, [9, 10]]

Method chunk is especially useful for an enumerable that is already sorted. This example counts words for each initial letter in a large array of words:

# Get sorted words from a web page.
url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
words = URI::open(url).readlines
# Make chunks, one for each letter.
e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
# Display 'A' through 'F'.
e.each {|c, words| p [c, words.length]; break if c == 'F' }

Output:

["A", 17096]
["B", 11070]
["C", 19901]
["D", 10896]
["E", 8736]
["F", 6860]

You can use the special symbol :_alone to force an element into its own separate chuck:

a = [0, 0, 1, 1]
e = a.chunk{|i| i.even? ? :_alone : true }
e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]

For example, you can put each line that contains a URL into its own chunk:

pattern = /http/
open(filename) { |f|
  f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
    pp lines
  }
}

You can use the special symbol :_separator or nil to force an element to be ignored (not included in any chunk):

a = [0, 0, -1, 1, 1]
e = a.chunk{|i| i < 0 ? :_separator : true }
e.to_a # => [[true, [0, 0]], [true, [1, 1]]]

Note that the separator does end the chunk:

a = [0, 0, -1, 1, -1, 1]
e = a.chunk{|i| i < 0 ? :_separator : true }
e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]

For example, the sequence of hyphens in svn log can be eliminated as follows:

sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
  f.chunk { |line|
    line != sep || nil
  }.each { |_, lines|
    pp lines
  }
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Update the portability section.\n",
#    "\n"]
#   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Add a note about default C flags.\n",
#    "\n"]
#   ...

Paragraphs separated by empty lines can be parsed as follows:

File.foreach("README").chunk { |line|
  /\A\s*\z/ !~ line || nil
}.each { |_, lines|
  pp lines
}

Returns an enumerator object generated from this enumerator and given enumerables.

e = (1..3).chain([4, 5])
e.to_a #=> [1, 2, 3, 4, 5]

Returns system configuration directory.

This is typically "/etc", but is modified by the prefix used when Ruby was compiled. For example, if Ruby is built and installed in /usr/local, returns "/usr/local/etc" on other platforms than Windows.

On Windows, this always returns the directory provided by the system.

Returns system temporary directory; typically “/tmp”.

Search took: 5ms  ·  Total Results: 1341