Results for: "module_function"

Raised to indicate that a system exit should occur with the specified exit_code

The Specification class contains the information for a gem. Typically defined in a .gemspec file or a Rakefile, and looks like this:

Gem::Specification.new do |s|
  s.name        = 'example'
  s.version     = '0.1.0'
  s.licenses    = ['MIT']
  s.summary     = "This is an example!"
  s.description = "Much longer explanation of the example!"
  s.authors     = ["Ruby Coder"]
  s.email       = 'rubycoder@example.com'
  s.files       = ["lib/example.rb"]
  s.homepage    = 'https://rubygems.org/gems/example'
  s.metadata    = { "source_code_uri" => "https://github.com/example/example" }
end

Starting in RubyGems 2.0, a Specification can hold arbitrary metadata. See metadata for restrictions on the format and size of metadata items you may add to a specification.

No documentation available
No documentation available

Gem::StubSpecification reads the stub: line from the gemspec. This prevents us having to eval the entire gemspec in order to find out certain information.

Internal error raised to when a timeout is triggered.

No documentation available

Net::HTTP exception class. You cannot use Net::HTTPExceptions directly; instead, you must use its subclasses.

Prism parses deterministically for the same input. This provides a nice property that is exposed through the node_id API on nodes. Effectively this means that for the same input, these values will remain consistent every time the source is parsed. This means we can reparse the source same with a node_id value and find the exact same node again.

The Relocation module provides an API around this property. It allows you to “save” nodes and locations using a minimal amount of memory (just the node_id and a field identifier) and then reify them later.

This module is responsible for converting the prism syntax tree into other syntax trees.

Mixin methods for install and update options for Gem::Commands

Mixin methods for security option for Gem::Commands

Mixin methods for Gem::Command to promote available RubyGems update

Object is the default root of all Ruby objects. Object inherits from BasicObject which allows creating alternate object hierarchies. Methods on Object are available to all classes unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally accessible. Although the instance methods of Object are defined by the Kernel module, we have chosen to document them here for clarity.

When referencing constants in classes inheriting from Object you do not need to use the full namespace. For example, referencing File inside YourClass will find the top-level File class.

In the descriptions of Object’s methods, the parameter symbol refers to a symbol, which is either a quoted string or a Symbol (such as :name).

What’s Here

First, what’s elsewhere. Class Object:

Here, class Object provides methods for:

Querying

Instance Variables

Other

DateTime

A subclass of Date that easily handles date, hour, minute, second, and offset.

DateTime class is considered deprecated. Use Time class.

DateTime does not consider any leap seconds, does not track any summer time rules.

A DateTime object is created with DateTime::new, DateTime::jd, DateTime::ordinal, DateTime::commercial, DateTime::parse, DateTime::strptime, DateTime::now, Time#to_datetime, etc.

require 'date'

DateTime.new(2001,2,3,4,5,6)
                    #=> #<DateTime: 2001-02-03T04:05:06+00:00 ...>

The last element of day, hour, minute, or second can be a fractional number. The fractional number’s precision is assumed at most nanosecond.

DateTime.new(2001,2,3.5)
                    #=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>

An optional argument, the offset, indicates the difference between the local time and UTC. For example, Rational(3,24) represents ahead of 3 hours of UTC, Rational(-5,24) represents behind of 5 hours of UTC. The offset should be -1 to +1, and its precision is assumed at most second. The default value is zero (equals to UTC).

DateTime.new(2001,2,3,4,5,6,Rational(3,24))
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

The offset also accepts string form:

DateTime.new(2001,2,3,4,5,6,'+03:00')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:00 ...>

An optional argument, the day of calendar reform (start), denotes a Julian day number, which should be 2298874 to 2426355 or negative/positive infinity. The default value is Date::ITALY (2299161=1582-10-15).

A DateTime object has various methods. See each reference.

d = DateTime.parse('3rd Feb 2001 04:05:06+03:30')
                    #=> #<DateTime: 2001-02-03T04:05:06+03:30 ...>
d.hour              #=> 4
d.min               #=> 5
d.sec               #=> 6
d.offset            #=> (7/48)
d.zone              #=> "+03:30"
d += Rational('1.5')
                    #=> #<DateTime: 2001-02-04%16:05:06+03:30 ...>
d = d.new_offset('+09:00')
                    #=> #<DateTime: 2001-02-04%21:35:06+09:00 ...>
d.strftime('%I:%M:%S %p')
                    #=> "09:35:06 PM"
d > DateTime.new(1999)
                    #=> true

When should you use DateTime and when should you use Time?

It’s a common misconception that William Shakespeare and Miguel de Cervantes died on the same day in history - so much so that UNESCO named April 23 as World Book Day because of this fact. However, because England hadn’t yet adopted the Gregorian Calendar Reform (and wouldn’t until 1752) their deaths are actually 10 days apart. Since Ruby’s Time class implements a proleptic Gregorian calendar and has no concept of calendar reform there’s no way to express this with Time objects. This is where DateTime steps in:

shakespeare = DateTime.iso8601('1616-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1616 00:00:00 +0000
cervantes = DateTime.iso8601('1616-04-23', Date::ITALY)
 #=> Sat, 23 Apr 1616 00:00:00 +0000

Already you can see something is weird - the days of the week are different. Taking this further:

cervantes == shakespeare
 #=> false
(shakespeare - cervantes).to_i
 #=> 10

This shows that in fact they died 10 days apart (in reality 11 days since Cervantes died a day earlier but was buried on the 23rd). We can see the actual date of Shakespeare’s death by using the gregorian method to convert it:

shakespeare.gregorian
 #=> Tue, 03 May 1616 00:00:00 +0000

So there’s an argument that all the celebrations that take place on the 23rd April in Stratford-upon-Avon are actually the wrong date since England is now using the Gregorian calendar. You can see why when we transition across the reform date boundary:

# start off with the anniversary of Shakespeare's birth in 1751
shakespeare = DateTime.iso8601('1751-04-23', Date::ENGLAND)
 #=> Tue, 23 Apr 1751 00:00:00 +0000

# add 366 days since 1752 is a leap year and April 23 is after February 29
shakespeare + 366
 #=> Thu, 23 Apr 1752 00:00:00 +0000

# add another 365 days to take us to the anniversary in 1753
shakespeare + 366 + 365
 #=> Fri, 04 May 1753 00:00:00 +0000

As you can see, if we’re accurately tracking the number of solar years since Shakespeare’s birthday then the correct anniversary date would be the 4th May and not the 23rd April.

So when should you use DateTime in Ruby and when should you use Time? Almost certainly you’ll want to use Time since your app is probably dealing with current dates and times. However, if you need to deal with dates and times in a historical context you’ll want to use DateTime to avoid making the same mistakes as UNESCO. If you also have to deal with timezones then best of luck - just bear in mind that you’ll probably be dealing with local solar times, since it wasn’t until the 19th century that the introduction of the railways necessitated the need for Standard Time and eventually timezones.

A Time object represents a date and time:

Time.new(2000, 1, 1, 0, 0, 0) # => 2000-01-01 00:00:00 -0600

Although its value can be expressed as a single numeric (see Epoch Seconds below), it can be convenient to deal with the value by parts:

t = Time.new(-2000, 1, 1, 0, 0, 0.0)
# => -2000-01-01 00:00:00 -0600
t.year # => -2000
t.month # => 1
t.mday # => 1
t.hour # => 0
t.min # => 0
t.sec # => 0
t.subsec # => 0

t = Time.new(2000, 12, 31, 23, 59, 59.5)
# => 2000-12-31 23:59:59.5 -0600
t.year # => 2000
t.month # => 12
t.mday # => 31
t.hour # => 23
t.min # => 59
t.sec # => 59
t.subsec # => (1/2)

Epoch Seconds

Epoch seconds is the exact number of seconds (including fractional subseconds) since the Unix Epoch, January 1, 1970.

You can retrieve that value exactly using method Time.to_r:

Time.at(0).to_r        # => (0/1)
Time.at(0.999999).to_r # => (9007190247541737/9007199254740992)

Other retrieval methods such as Time#to_i and Time#to_f may return a value that rounds or truncates subseconds.

Time Resolution

A Time object derived from the system clock (for example, by method Time.now) has the resolution supported by the system.

Time Internal Representation

Time implementation uses a signed 63 bit integer, Integer, or Rational. It is a number of nanoseconds since the Epoch. The signed 63 bit integer can represent 1823-11-12 to 2116-02-20. When Integer or Rational is used (before 1823, after 2116, under nanosecond), Time works slower than when the signed 63 bit integer is used.

Ruby uses the C function localtime and gmtime to map between the number and 6-tuple (year,month,day,hour,minute,second). localtime is used for local time and “gmtime” is used for UTC.

Integer and Rational has no range limit, but the localtime and gmtime has range limits due to the C types time_t and struct tm. If that limit is exceeded, Ruby extrapolates the localtime function.

The Time class always uses the Gregorian calendar. I.e. the proleptic Gregorian calendar is used. Other calendars, such as Julian calendar, are not supported.

time_t can represent 1901-12-14 to 2038-01-19 if it is 32 bit signed integer, -292277022657-01-27 to 292277026596-12-05 if it is 64 bit signed integer. However localtime on some platforms doesn’t supports negative time_t (before 1970).

struct tm has tm_year member to represent years. (tm_year = 0 means the year 1900.) It is defined as int in the C standard. tm_year can represent between -2147481748 to 2147485547 if int is 32 bit.

Ruby supports leap seconds as far as if the C function localtime and gmtime supports it. They use the tz database in most Unix systems. The tz database has timezones which supports leap seconds. For example, “Asia/Tokyo” doesn’t support leap seconds but “right/Asia/Tokyo” supports leap seconds. So, Ruby supports leap seconds if the TZ environment variable is set to “right/Asia/Tokyo” in most Unix systems.

Examples

All of these examples were done using the EST timezone which is GMT-5.

Creating a New Time Instance

You can create a new instance of Time with Time.new. This will use the current system time. Time.now is an alias for this. You can also pass parts of the time to Time.new such as year, month, minute, etc. When you want to construct a time this way you must pass at least a year. If you pass the year with nothing else time will default to January 1 of that year at 00:00:00 with the current system timezone. Here are some examples:

Time.new(2002)         #=> 2002-01-01 00:00:00 -0500
Time.new(2002, 10)     #=> 2002-10-01 00:00:00 -0500
Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500

You can pass a UTC offset:

Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200

Or a timezone object:

zone = timezone("Europe/Athens")      # Eastern European Time, UTC+2
Time.new(2002, 10, 31, 2, 2, 2, zone) #=> 2002-10-31 02:02:02 +0200

You can also use Time.local and Time.utc to infer local and UTC timezones instead of using the current system setting.

You can also create a new time using Time.at which takes the number of seconds (with subsecond) since the Unix Epoch.

Time.at(628232400) #=> 1989-11-28 00:00:00 -0500

Working with an Instance of Time

Once you have an instance of Time there is a multitude of things you can do with it. Below are some examples. For all of the following examples, we will work on the assumption that you have done the following:

t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00")

Was that a monday?

t.monday? #=> false

What year was that again?

t.year #=> 1993

Was it daylight savings at the time?

t.dst? #=> false

What’s the day a year later?

t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900

How many seconds was that since the Unix Epoch?

t.to_i #=> 730522800

You can also do standard functions like compare two times.

t1 = Time.new(2010)
t2 = Time.new(2011)

t1 == t2 #=> false
t1 == t1 #=> true
t1 <  t2 #=> true
t1 >  t2 #=> false

Time.new(2010,10,31).between?(t1, t2) #=> true

What’s Here

First, what’s elsewhere. Class Time:

Here, class Time provides methods that are useful for:

Methods for Creating

Methods for Fetching

Methods for Querying

Methods for Comparing

Methods for Converting

Methods for Rounding

For the forms of argument zone, see Timezone Specifiers.

Timezone Specifiers

Certain Time methods accept arguments that specify timezones:

The value given with any of these must be one of the following (each detailed below):

Hours/Minutes Offsets

The zone value may be a string offset from UTC in the form '+HH:MM' or '-HH:MM', where:

Examples:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: '-23:59')            # => 1999-12-31 20:16:01 -2359
Time.at(t, in: '+23:59')            # => 2000-01-02 20:14:01 +2359

Single-Letter Offsets

The zone value may be a letter in the range 'A'..'I' or 'K'..'Z'; see List of military time zones:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: 'A')                 # => 2000-01-01 21:15:01 +0100
Time.at(t, in: 'I')                 # => 2000-01-02 05:15:01 +0900
Time.at(t, in: 'K')                 # => 2000-01-02 06:15:01 +1000
Time.at(t, in: 'Y')                 # => 2000-01-01 08:15:01 -1200
Time.at(t, in: 'Z')                 # => 2000-01-01 20:15:01 UTC

Integer Offsets

The zone value may be an integer number of seconds in the range -86399..86399:

t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
Time.at(t, in: -86399)              # => 1999-12-31 20:15:02 -235959
Time.at(t, in: 86399)               # => 2000-01-02 20:15:00 +235959

Timezone Objects

The zone value may be an object responding to certain timezone methods, an instance of Timezone and TZInfo for example.

The timezone methods are:

A custom timezone class may have these instance methods, which will be called if defined:

Time-Like Objects

A Time-like object is a container object capable of interfacing with timezone libraries for timezone conversion.

The argument to the timezone conversion methods above will have attributes similar to Time, except that timezone related attributes are meaningless.

The objects returned by local_to_utc and utc_to_local methods of the timezone object may be of the same class as their arguments, of arbitrary object classes, or of class Integer.

For a returned class other than Integer, the class must have the following methods:

For a returned Integer, its components, decomposed in UTC, are interpreted as times in the specified timezone.

Timezone Names

If the class (the receiver of class methods, or the class of the receiver of instance methods) has find_timezone singleton method, this method is called to achieve the corresponding timezone object from a timezone name.

For example, using Timezone:

class TimeWithTimezone < Time
  require 'timezone'
  def self.find_timezone(z) = Timezone[z]
end

TimeWithTimezone.now(in: "America/New_York")        #=> 2023-12-25 00:00:00 -0500
TimeWithTimezone.new("2023-12-25 America/New_York") #=> 2023-12-25 00:00:00 -0500

Or, using TZInfo:

class TimeWithTZInfo < Time
  require 'tzinfo'
  def self.find_timezone(z) = TZInfo::Timezone.get(z)
end

TimeWithTZInfo.now(in: "America/New_York")          #=> 2023-12-25 00:00:00 -0500
TimeWithTZInfo.new("2023-12-25 America/New_York")   #=> 2023-12-25 00:00:00 -0500

You can define this method per subclasses, or on the toplevel Time class.

IO

An instance of class IO (commonly called a stream) represents an input/output stream in the underlying operating system. Class IO is the basis for input and output in Ruby.

Class File is the only class in the Ruby core that is a subclass of IO. Some classes in the Ruby standard library are also subclasses of IO; these include TCPSocket and UDPSocket.

The global constant ARGF (also accessible as $<) provides an IO-like stream that allows access to all file paths found in ARGV (or found in STDIN if ARGV is empty). ARGF is not itself a subclass of IO.

Class StringIO provides an IO-like stream that handles a String. StringIO is not itself a subclass of IO.

Important objects based on IO include:

An instance of IO may be created using:

Like a File stream, an IO stream has:

And like other IO streams, it has:

Extension io/console

Extension io/console provides numerous methods for interacting with the console; requiring it adds numerous methods to class IO.

Example Files

Many examples here use these variables:

# English text with newlines.
text = <<~EOT
  First line
  Second line

  Fourth line
  Fifth line
EOT

# Russian text.
russian = "\u{442 435 441 442}" # => "тест"

# Binary data.
data = "\u9990\u9991\u9992\u9993\u9994"

# Text file.
File.write('t.txt', text)

# File with Russian text.
File.write('t.rus', russian)

# File with binary data.
f = File.new('t.dat', 'wb:UTF-16')
f.write(data)
f.close

Open Options

A number of IO methods accept optional keyword arguments that determine how a new stream is to be opened:

Also available are the options offered in String#encode, which may control conversion between external and internal encoding.

Basic IO

You can perform basic stream IO with these methods, which typically operate on multi-byte strings:

Position

An IO stream has a nonnegative integer position, which is the byte offset at which the next read or write is to occur. A new stream has position zero (and line number zero); method rewind resets the position (and line number) to zero.

These methods discard buffers and the Encoding::Converter instances used for that IO.

The relevant methods:

Open and Closed Streams

A new IO stream may be open for reading, open for writing, or both.

A stream is automatically closed when claimed by the garbage collector.

Attempted reading or writing on a closed stream raises an exception.

The relevant methods:

End-of-Stream

You can query whether a stream is positioned at its end:

You can reposition to end-of-stream by using method IO#seek:

f = File.new('t.txt')
f.eof? # => false
f.seek(0, :END)
f.eof? # => true
f.close

Or by reading all stream content (which is slower than using IO#seek):

f.rewind
f.eof? # => false
f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n"
f.eof? # => true

Line IO

Class IO supports line-oriented input and output

Line Input

Class IO supports line-oriented input for files and IO streams

File Line Input

You can read lines from a file using these methods:

For each of these methods:

Stream Line Input

You can read lines from an IO stream using these methods:

For each of these methods:

Line Separator

Each of the line input methods uses a line separator: the string that determines what is considered a line; it is sometimes called the input record separator.

The default line separator is taken from global variable $/, whose initial value is "\n".

Generally, the line to be read next is all data from the current position to the next line separator (but see Special Line Separator Values):

f = File.new('t.txt')
# Method gets with no sep argument returns the next line, according to $/.
f.gets # => "First line\n"
f.gets # => "Second line\n"
f.gets # => "\n"
f.gets # => "Fourth line\n"
f.gets # => "Fifth line\n"
f.close

You can use a different line separator by passing argument sep:

f = File.new('t.txt')
f.gets('l')   # => "First l"
f.gets('li')  # => "ine\nSecond li"
f.gets('lin') # => "ne\n\nFourth lin"
f.gets        # => "e\n"
f.close

Or by setting global variable $/:

f = File.new('t.txt')
$/ = 'l'
f.gets # => "First l"
f.gets # => "ine\nSecond l"
f.gets # => "ine\n\nFourth l"
f.close
Special Line Separator Values

Each of the line input methods accepts two special values for parameter sep:

Line Limit

Each of the line input methods uses an integer line limit, which restricts the number of bytes that may be returned. (A multi-byte character will not be split, and so a returned line may be slightly longer than the limit).

The default limit value is -1; any negative limit value means that there is no limit.

If there is no limit, the line is determined only by sep.

# Text with 1-byte characters.
File.open('t.txt') {|f| f.gets(1) }  # => "F"
File.open('t.txt') {|f| f.gets(2) }  # => "Fi"
File.open('t.txt') {|f| f.gets(3) }  # => "Fir"
File.open('t.txt') {|f| f.gets(4) }  # => "Firs"
# No more than one line.
File.open('t.txt') {|f| f.gets(10) } # => "First line"
File.open('t.txt') {|f| f.gets(11) } # => "First line\n"
File.open('t.txt') {|f| f.gets(12) } # => "First line\n"

# Text with 2-byte characters, which will not be split.
File.open('t.rus') {|f| f.gets(1).size } # => 1
File.open('t.rus') {|f| f.gets(2).size } # => 1
File.open('t.rus') {|f| f.gets(3).size } # => 2
File.open('t.rus') {|f| f.gets(4).size } # => 2
Line Separator and Line Limit

With arguments sep and limit given, combines the two behaviors:

Example:

File.open('t.txt') {|f| f.gets('li', 20) } # => "First li"
File.open('t.txt') {|f| f.gets('li', 2) }  # => "Fi"
Line Number

A readable IO stream has a non-negative integer line number:

Unless modified by a call to method IO#lineno=, the line number is the number of lines read by certain line-oriented methods, according to the effective line separator:

A new stream is initially has line number zero (and position zero); method rewind resets the line number (and position) to zero:

f = File.new('t.txt')
f.lineno # => 0
f.gets   # => "First line\n"
f.lineno # => 1
f.rewind
f.lineno # => 0
f.close

Reading lines from a stream usually changes its line number:

f = File.new('t.txt', 'r')
f.lineno   # => 0
f.readline # => "This is line one.\n"
f.lineno   # => 1
f.readline # => "This is the second line.\n"
f.lineno   # => 2
f.readline # => "Here's the third line.\n"
f.lineno   # => 3
f.eof?     # => true
f.close

Iterating over lines in a stream usually changes its line number:

File.open('t.txt') do |f|
  f.each_line do |line|
    p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}"
  end
end

Output:

"position=11 eof?=false lineno=1"
"position=23 eof?=false lineno=2"
"position=24 eof?=false lineno=3"
"position=36 eof?=false lineno=4"
"position=47 eof?=true lineno=5"

Unlike the stream’s position, the line number does not affect where the next read or write will occur:

f = File.new('t.txt')
f.lineno = 1000
f.lineno # => 1000
f.gets   # => "First line\n"
f.lineno # => 1001
f.close

Associated with the line number is the global variable $.:

Line Output

You can write to an IO stream line-by-line using this method:

Character IO

You can process an IO stream character-by-character using these methods:

Byte IO

You can process an IO stream byte-by-byte using these methods:

Codepoint IO

You can process an IO stream codepoint-by-codepoint:

What’s Here

First, what’s elsewhere. Class IO:

Here, class IO provides methods that are useful for:

Creating

Reading

Writing

Positioning

Iterating

Settings

Querying

Buffering

Low-Level Access

Other

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method or using [].

measurements = OpenStruct.new("length (in inches)" => 24)
measurements[:"length (in inches)"]       # => 24
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Ractor compatibility: A frozen OpenStruct with shareable values is itself shareable.

Caveats

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct. Creating an open struct from a small Hash and accessing a few of the entries can be 200 times slower than accessing the hash directly.

This is a potential security issue; building OpenStruct from untrusted user data (e.g. JSON web request) may be susceptible to a “symbol denial of service” attack since the keys create methods and names of methods are never garbage collected.

This may also be the source of incompatibilities between Ruby versions:

o = OpenStruct.new
o.then # => nil in Ruby < 2.6, enumerator for Ruby >= 2.6

Builtin methods may be overwritten this way, which may be a source of bugs or security issues:

o = OpenStruct.new
o.methods # => [:to_h, :marshal_load, :marshal_dump, :each_pair, ...
o.methods = [:foo, :bar]
o.methods # => [:foo, :bar]

To help remedy clashes, OpenStruct uses only protected/private methods ending with ! and defines aliases for builtin public methods by adding a !:

o = OpenStruct.new(make: 'Bentley', class: :luxury)
o.class # => :luxury
o.class! # => OpenStruct

It is recommended (but not enforced) to not use fields ending in !; Note that a subclass’ methods may not be overwritten, nor can OpenStruct’s own methods ending with !.

For all these reasons, consider not using OpenStruct at all.

Class Struct provides a convenient way to create a simple class that can store and fetch values.

This example creates a subclass of Struct, Struct::Customer; the first argument, a string, is the name of the subclass; the other arguments, symbols, determine the members of the new subclass.

Customer = Struct.new('Customer', :name, :address, :zip)
Customer.name       # => "Struct::Customer"
Customer.class      # => Class
Customer.superclass # => Struct

Corresponding to each member are two methods, a writer and a reader, that store and fetch values:

methods = Customer.instance_methods false
methods # => [:zip, :address=, :zip=, :address, :name, :name=]

An instance of the subclass may be created, and its members assigned values, via method ::new:

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe # => #<struct Struct::Customer name="Joe Smith", address="123 Maple, Anytown NC", zip=12345>

The member values may be managed thus:

joe.name    # => "Joe Smith"
joe.name = 'Joseph Smith'
joe.name    # => "Joseph Smith"

And thus; note that member name may be expressed as either a string or a symbol:

joe[:name]  # => "Joseph Smith"
joe[:name] = 'Joseph Smith, Jr.'
joe['name'] # => "Joseph Smith, Jr."

See Struct::new.

What’s Here

First, what’s elsewhere. Class Struct:

See also Data, which is a somewhat similar, but stricter concept for defining immutable value objects.

Here, class Struct provides methods that are useful for:

Methods for Creating a Struct Subclass

Methods for Querying

Methods for Comparing

Methods for Fetching

Methods for Assigning

Methods for Iterating

Methods for Converting

UNIXServer represents a UNIX domain stream server socket.

UNIXSocket represents a UNIX domain stream client socket.

IO streams for strings, with access similar to IO; see IO.

About the Examples

Examples on this page assume that StringIO has been required:

require 'stringio'

BasicObject is the parent class of all classes in Ruby. In particular, BasicObject is the parent class of class Object, which is itself the default parent class of every Ruby class:

class Foo; end
Foo.superclass    # => Object
Object.superclass # => BasicObject

BasicObject is the only class that has no parent:

BasicObject.superclass # => nil

Class BasicObject can be used to create an object hierarchy (e.g., class Delegator) that is independent of Ruby’s object hierarchy. Such objects:

A variety of strategies can be used to provide useful portions of the Standard Library in subclasses of BasicObject:

What’s Here

These are the methods defined for BasicObject:

Raised when an IO operation fails.

File.open("/etc/hosts") {|f| f << "example"}
  #=> IOError: not opened for writing

File.open("/etc/hosts") {|f| f.close; f.read }
  #=> IOError: closed stream

Note that some IO failures raise SystemCallErrors and these are not subclasses of IOError:

File.open("does/not/exist")
  #=> Errno::ENOENT: No such file or directory - does/not/exist

Ractor is an Actor-model abstraction for Ruby that provides thread-safe parallel execution.

Ractor.new makes a new Ractor, which can run in parallel.

# The simplest ractor
r = Ractor.new {puts "I am in Ractor!"}
r.take # wait for it to finish
# Here, "I am in Ractor!" is printed

Ractors do not share all objects with each other. There are two main benefits to this: across ractors, thread-safety concerns such as data-races and race-conditions are not possible. The other benefit is parallelism.

To achieve this, object sharing is limited across ractors. For example, unlike in threads, ractors can’t access all the objects available in other ractors. Even objects normally available through variables in the outer scope are prohibited from being used across ractors.

a = 1
r = Ractor.new {puts "I am in Ractor! a=#{a}"}
# fails immediately with
# ArgumentError (can not isolate a Proc because it accesses outer variables (a).)

The object must be explicitly shared:

a = 1
r = Ractor.new(a) { |a1| puts "I am in Ractor! a=#{a1}"}

On CRuby (the default implementation), Global Virtual Machine Lock (GVL) is held per ractor, so ractors can perform in parallel without locking each other. This is unlike the situation with threads on CRuby.

Instead of accessing shared state, objects should be passed to and from ractors by sending and receiving them as messages.

a = 1
r = Ractor.new do
  a_in_ractor = receive # receive blocks until somebody passes a message
  puts "I am in Ractor! a=#{a_in_ractor}"
end
r.send(a)  # pass it
r.take
# Here, "I am in Ractor! a=1" is printed

There are two pairs of methods for sending/receiving messages:

In addition to that, any arguments passed to Ractor.new are passed to the block and available there as if received by Ractor.receive, and the last block value is sent outside of the ractor as if sent by Ractor.yield.

A little demonstration of a classic ping-pong:

server = Ractor.new(name: "server") do
  puts "Server starts: #{self.inspect}"
  puts "Server sends: ping"
  Ractor.yield 'ping'                       # The server doesn't know the receiver and sends to whoever interested
  received = Ractor.receive                 # The server doesn't know the sender and receives from whoever sent
  puts "Server received: #{received}"
end

client = Ractor.new(server) do |srv|        # The server is sent to the client, and available as srv
  puts "Client starts: #{self.inspect}"
  received = srv.take                       # The client takes a message from the server
  puts "Client received from " \
       "#{srv.inspect}: #{received}"
  puts "Client sends to " \
       "#{srv.inspect}: pong"
  srv.send 'pong'                           # The client sends a message to the server
end

[client, server].each(&:take)               # Wait until they both finish

This will output something like:

Server starts: #<Ractor:#2 server test.rb:1 running>
Server sends: ping
Client starts: #<Ractor:#3 test.rb:8 running>
Client received from #<Ractor:#2 server test.rb:1 blocking>: ping
Client sends to #<Ractor:#2 server test.rb:1 blocking>: pong
Server received: pong

Ractors receive their messages via the incoming port, and send them to the outgoing port. Either one can be disabled with Ractor#close_incoming and Ractor#close_outgoing, respectively. When a ractor terminates, its ports are closed automatically.

Shareable and unshareable objects

When an object is sent to and from a ractor, it’s important to understand whether the object is shareable or unshareable. Most Ruby objects are unshareable objects. Even frozen objects can be unshareable if they contain (through their instance variables) unfrozen objects.

Shareable objects are those which can be used by several threads without compromising thread-safety, for example numbers, true and false. Ractor.shareable? allows you to check this, and Ractor.make_shareable tries to make the object shareable if it’s not already, and gives an error if it can’t do it.

Ractor.shareable?(1)            #=> true -- numbers and other immutable basic values are shareable
Ractor.shareable?('foo')        #=> false, unless the string is frozen due to # frozen_string_literal: true
Ractor.shareable?('foo'.freeze) #=> true
Ractor.shareable?([Object.new].freeze) #=> false, inner object is unfrozen

ary = ['hello', 'world']
ary.frozen?                 #=> false
ary[0].frozen?              #=> false
Ractor.make_shareable(ary)
ary.frozen?                 #=> true
ary[0].frozen?              #=> true
ary[1].frozen?              #=> true

When a shareable object is sent (via send or Ractor.yield), no additional processing occurs on it. It just becomes usable by both ractors. When an unshareable object is sent, it can be either copied or moved. The first is the default, and it copies the object fully by deep cloning (Object#clone) the non-shareable parts of its structure.

data = ['foo', 'bar'.freeze]
r = Ractor.new do
  data2 = Ractor.receive
  puts "In ractor: #{data2.object_id}, #{data2[0].object_id}, #{data2[1].object_id}"
end
r.send(data)
r.take
puts "Outside  : #{data.object_id}, #{data[0].object_id}, #{data[1].object_id}"

This will output something like:

In ractor: 340, 360, 320
Outside  : 380, 400, 320

Note that the object ids of the array and the non-frozen string inside the array have changed in the ractor because they are different objects. The second array’s element, which is a shareable frozen string, is the same object.

Deep cloning of objects may be slow, and sometimes impossible. Alternatively, move: true may be used during sending. This will move the unshareable object to the receiving ractor, making it inaccessible to the sending ractor.

data = ['foo', 'bar']
r = Ractor.new do
  data_in_ractor = Ractor.receive
  puts "In ractor: #{data_in_ractor.object_id}, #{data_in_ractor[0].object_id}"
end
r.send(data, move: true)
r.take
puts "Outside: moved? #{Ractor::MovedObject === data}"
puts "Outside: #{data.inspect}"

This will output:

In ractor: 100, 120
Outside: moved? true
test.rb:9:in `method_missing': can not send any methods to a moved object (Ractor::MovedError)

Notice that even inspect (and more basic methods like __id__) is inaccessible on a moved object.

Class and Module objects are shareable so the class/module definitions are shared between ractors. Ractor objects are also shareable. All operations on shareable objects are thread-safe, so the thread-safety property will be kept. We can not define mutable shareable objects in Ruby, but C extensions can introduce them.

It is prohibited to access (get) instance variables of shareable objects in other ractors if the values of the variables aren’t shareable. This can occur because modules/classes are shareable, but they can have instance variables whose values are not. In non-main ractors, it’s also prohibited to set instance variables on classes/modules (even if the value is shareable).

class C
  class << self
    attr_accessor :tricky
  end
end

C.tricky = "unshareable".dup

r = Ractor.new(C) do |cls|
  puts "I see #{cls}"
  puts "I can't see #{cls.tricky}"
  cls.tricky = true # doesn't get here, but this would also raise an error
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

Ractors can access constants if they are shareable. The main Ractor is the only one that can access non-shareable constants.

GOOD = 'good'.freeze
BAD = 'bad'.dup

r = Ractor.new do
  puts "GOOD=#{GOOD}"
  puts "BAD=#{BAD}"
end
r.take
# GOOD=good
# can not access non-shareable objects in constant Object::BAD by non-main Ractor. (NameError)

# Consider the same C class from above

r = Ractor.new do
  puts "I see #{C}"
  puts "I can't see #{C.tricky}"
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

See also the description of shareable_constant_value pragma in Comments syntax explanation.

Ractors vs threads

Each ractor has its own main Thread. New threads can be created from inside ractors (and, on CRuby, they share the GVL with other threads of this ractor).

r = Ractor.new do
  a = 1
  Thread.new {puts "Thread in ractor: a=#{a}"}.join
end
r.take
# Here "Thread in ractor: a=1" will be printed

Note on code examples

In the examples below, sometimes we use the following method to wait for ractors that are not currently blocked to finish (or to make progress).

def wait
  sleep(0.1)
end

It is **only for demonstration purposes** and shouldn’t be used in a real code. Most of the time, take is used to wait for ractors to finish.

Reference

See Ractor design doc for more details.

Search took: 25ms  ·  Total Results: 5441