Results for: "partition"

foo += bar ^^^^^^^^^^

foo &&= bar ^^^^^^^^^^^

foo ||= bar ^^^^^^^^^^^

Get all [gem, version] from the command line.

An argument in the form gem:ver is pull apart into the gen name and version, respectively.

No documentation available
No documentation available

Serializes the DH parameters to a PEM-encoding.

Note that any existing per-session public/private keys will not get encoded, just the Diffie-Hellman parameters will be encoded.

PEM-encoded parameters will look like:

-----BEGIN DH PARAMETERS-----
[...]
-----END DH PARAMETERS-----

See also public_to_pem (X.509 SubjectPublicKeyInfo) and private_to_pem (PKCS #8 PrivateKeyInfo or EncryptedPrivateKeyInfo) for serialization with the private or public key components.

Serializes a private or public key to a PEM-encoding.

When the key contains public components only

Serializes it into an X.509 SubjectPublicKeyInfo. The parameters cipher and password are ignored.

A PEM-encoded key will look like:

-----BEGIN PUBLIC KEY-----
[...]
-----END PUBLIC KEY-----

Consider using public_to_pem instead. This serializes the key into an X.509 SubjectPublicKeyInfo regardless of whether it is a public key or a private key.

When the key contains private components, and no parameters are given

Serializes it into a traditional OpenSSL DSAPrivateKey.

A PEM-encoded key will look like:

-----BEGIN DSA PRIVATE KEY-----
[...]
-----END DSA PRIVATE KEY-----
When the key contains private components, and cipher and password are given

Serializes it into a traditional OpenSSL DSAPrivateKey and encrypts it in OpenSSL’s traditional PEM encryption format. cipher must be a cipher name understood by OpenSSL::Cipher.new or an instance of OpenSSL::Cipher.

An encrypted PEM-encoded key will look like:

-----BEGIN DSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,733F5302505B34701FC41F5C0746E4C0

[...]
-----END DSA PRIVATE KEY-----

Note that this format uses MD5 to derive the encryption key, and hence will not be available on FIPS-compliant systems.

This method is kept for compatibility. This should only be used when the traditional, non-standard OpenSSL format is required.

Consider using public_to_pem (X.509 SubjectPublicKeyInfo) or private_to_pem (PKCS #8 PrivateKeyInfo or EncryptedPrivateKeyInfo) instead.

Serializes a private or public key to a PEM-encoding.

When the key contains public components only

Serializes it into an X.509 SubjectPublicKeyInfo. The parameters cipher and password are ignored.

A PEM-encoded key will look like:

-----BEGIN PUBLIC KEY-----
[...]
-----END PUBLIC KEY-----

Consider using public_to_pem instead. This serializes the key into an X.509 SubjectPublicKeyInfo regardless of whether it is a public key or a private key.

When the key contains private components, and no parameters are given

Serializes it into a SEC 1/RFC 5915 ECPrivateKey.

A PEM-encoded key will look like:

-----BEGIN EC PRIVATE KEY-----
[...]
-----END EC PRIVATE KEY-----
When the key contains private components, and cipher and password are given

Serializes it into a SEC 1/RFC 5915 ECPrivateKey and encrypts it in OpenSSL’s traditional PEM encryption format. cipher must be a cipher name understood by OpenSSL::Cipher.new or an instance of OpenSSL::Cipher.

An encrypted PEM-encoded key will look like:

-----BEGIN EC PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,733F5302505B34701FC41F5C0746E4C0

[...]
-----END EC PRIVATE KEY-----

Note that this format uses MD5 to derive the encryption key, and hence will not be available on FIPS-compliant systems.

This method is kept for compatibility. This should only be used when the SEC 1/RFC 5915 ECPrivateKey format is required.

Consider using public_to_pem (X.509 SubjectPublicKeyInfo) or private_to_pem (PKCS #8 PrivateKeyInfo or EncryptedPrivateKeyInfo) instead.

Serializes a private or public key to a PEM-encoding.

When the key contains public components only

Serializes it into an X.509 SubjectPublicKeyInfo. The parameters cipher and password are ignored.

A PEM-encoded key will look like:

-----BEGIN PUBLIC KEY-----
[...]
-----END PUBLIC KEY-----

Consider using public_to_pem instead. This serializes the key into an X.509 SubjectPublicKeyInfo regardless of whether the key is a public key or a private key.

When the key contains private components, and no parameters are given

Serializes it into a PKCS #1 RSAPrivateKey.

A PEM-encoded key will look like:

-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----
When the key contains private components, and cipher and password are given

Serializes it into a PKCS #1 RSAPrivateKey and encrypts it in OpenSSL’s traditional PEM encryption format. cipher must be a cipher name understood by OpenSSL::Cipher.new or an instance of OpenSSL::Cipher.

An encrypted PEM-encoded key will look like:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,733F5302505B34701FC41F5C0746E4C0

[...]
-----END RSA PRIVATE KEY-----

Note that this format uses MD5 to derive the encryption key, and hence will not be available on FIPS-compliant systems.

This method is kept for compatibility. This should only be used when the PKCS #1 RSAPrivateKey format is required.

Consider using public_to_pem (X.509 SubjectPublicKeyInfo) or private_to_pem (PKCS #8 PrivateKeyInfo or EncryptedPrivateKeyInfo) instead.

Sets the list of available TLSv1.3 cipher suites for this context.

Initiates an SSL/TLS handshake with a server.

Writes string to the SSL connection.

The X509 certificate for this socket endpoint.

Returns an Array of SingleResponse for this BasicResponse.

Returns the ‘short name’ of the object identifier representing the algorithm that was used to derive the message imprint digest. For valid timestamps, this is the same value that was already given in the Request. If status is GRANTED or GRANTED_WITH_MODS, this is never nil.

Example:

algo = token_info.algorithm
puts algo                -> "SHA1"

If the timestamp token is valid then this field contains the same nonce that was passed to the timestamp server in the initial Request.

Allows to set the object identifier or the ‘short name’ of the algorithm that was used to create the message imprint digest.

Example:

request.algorithm = "SHA1"

Returns the ‘short name’ of the object identifier that represents the algorithm that was used to create the message imprint digest.

Sets the nonce (number used once) that the server shall include in its response. If the nonce is set, the server must return the same nonce value in a valid Response.

Returns the nonce (number used once) that the server shall include in its response.

No documentation available
No documentation available
No documentation available
No documentation available
Search took: 3ms  ·  Total Results: 4702