Provides a convenient Ruby iterator which executes a block for each entry in the /etc/passwd
file.
The code block is passed an Passwd
struct.
See ::getpwent
above for details.
Example:
require 'etc' Etc.passwd {|u| puts u.name + " = " + u.gecos }
Resets the process of reading the /etc/group
file, so that the next call to ::getgrent
will return the first entry again.
Returns system configuration directory.
This is typically "/etc"
, but is modified by the prefix used when Ruby was compiled. For example, if Ruby is built and installed in /usr/local
, returns "/usr/local/etc"
on other platforms than Windows.
On Windows, this always returns the directory provided by the system.
Returns system configuration variable using sysconf().
name should be a constant under Etc
which begins with SC_
.
The return value is an integer or nil. nil means indefinite limit. (sysconf() returns -1 but errno is not set.)
Etc.sysconf(Etc::SC_ARG_MAX) #=> 2097152 Etc.sysconf(Etc::SC_LOGIN_NAME_MAX) #=> 256
Returns system configuration variable using confstr().
name should be a constant under Etc
which begins with CS_
.
The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)
Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin" # GNU/Linux Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18" Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"
Creates a new handler that opens library
, and returns an instance of Fiddle::Handle
.
If nil
is given for the library
, Fiddle::Handle::DEFAULT is used, which is the equivalent to RTLD_DEFAULT. See man 3 dlopen
for more.
lib = Fiddle.dlopen(nil)
The default is dependent on OS, and provide a handle for all libraries already loaded. For example, in most cases you can use this to access libc
functions, or ruby functions like rb_str_new
.
See Fiddle::Handle.new
for more.
Creates a new handler that opens library
, and returns an instance of Fiddle::Handle
.
If nil
is given for the library
, Fiddle::Handle::DEFAULT is used, which is the equivalent to RTLD_DEFAULT. See man 3 dlopen
for more.
lib = Fiddle.dlopen(nil)
The default is dependent on OS, and provide a handle for all libraries already loaded. For example, in most cases you can use this to access libc
functions, or ruby functions like rb_str_new
.
See Fiddle::Handle.new
for more.
Returns a String containing the generated JSON data.
See also JSON.fast_generate
, JSON.pretty_generate
.
Argument obj
is the Ruby object to be converted to JSON.
Argument opts
, if given, contains a Hash of options for the generation. See Generating Options.
When obj
is an Array, returns a String containing a JSON array:
obj = ["foo", 1.0, true, false, nil] json = JSON.generate(obj) json # => '["foo",1.0,true,false,null]'
When obj
is a Hash, returns a String containing a JSON object:
obj = {foo: 0, bar: 's', baz: :bat} json = JSON.generate(obj) json # => '{"foo":0,"bar":"s","baz":"bat"}'
For examples of generating from other Ruby objects, see Generating JSON from Other Objects.
Raises an exception if any formatting option is not a String.
Raises an exception if obj
contains circular references:
a = []; b = []; a.push(b); b.push(a) # Raises JSON::NestingError (nesting of 100 is too deep): JSON.generate(a)
Encodes string using String.encode
.
Calculates Adler-32 checksum for string
, and returns updated value of adler
. If string
is omitted, it returns the Adler-32 initial value. If adler
is omitted, it assumes that the initial value is given to adler
. If string
is an IO
instance, reads from the IO
until the IO
returns nil and returns Adler-32 of all read data.
Example usage:
require "zlib" data = "foo" puts "Adler32 checksum: #{Zlib.adler32(data).to_s(16)}" #=> Adler32 checksum: 2820145
Returns true
if the named file exists and has a zero size.
file_name can be an IO
object.
Returns true
if the named file exists and has a zero size.
file_name can be an IO
object.
Returns true
if filepath
points to a character device, false
otherwise.
File.chardev?($stdin) # => true File.chardev?('t.txt') # => false
Returns true
if the named file has the setuid bit set.
file_name can be an IO
object.
Returns true
if the named file has the setgid bit set.
file_name can be an IO
object.
Returns true
if the named file has the sticky bit set.
file_name can be an IO
object.
Returns true
if the named files are identical.
file_1 and file_2 can be an IO
object.
open("a", "w") {} p File.identical?("a", "a") #=> true p File.identical?("a", "./a") #=> true File.link("a", "b") p File.identical?("a", "b") #=> true File.symlink("a", "c") p File.identical?("a", "c") #=> true open("d", "w") {} p File.identical?("a", "d") #=> false
Initiates garbage collection, even if manually disabled.
The full_mark
keyword argument determines whether or not to perform a major garbage collection cycle. When set to true
, a major garbage collection cycle is run, meaning all objects are marked. When set to false
, a minor garbage collection cycle is run, meaning only young objects are marked.
The immediate_mark
keyword argument determines whether or not to perform incremental marking. When set to true
, marking is completed during the call to this method. When set to false
, marking is performed in steps that are interleaved with future Ruby code execution, so marking might not be completed during this method call. Note that if full_mark
is false
, then marking will always be immediate, regardless of the value of immediate_mark
.
The immediate_sweep
keyword argument determines whether or not to defer sweeping (using lazy sweep). When set to false
, sweeping is performed in steps that are interleaved with future Ruby code execution, so sweeping might not be completed during this method call. When set to true
, sweeping is completed during the call to this method.
Note: These keyword arguments are implementation and version-dependent. They are not guaranteed to be future-compatible and may be ignored if the underlying implementation does not support them.
Sets or gets information about the current GC config.
Configuration parameters are GC implementation-specific and may change without notice.
This method can be called without parameters to retrieve the current config as a Hash
with Symbol
keys.
This method can also be called with a Hash
argument to assign values to valid config keys. Config keys missing from the passed Hash
will be left unmodified.
If a key/value pair is passed to this function that does not correspond to a valid config key for the GC implementation being used, no config will be updated, the key will be present in the returned Hash
, and its value will be nil
. This is to facilitate easy migration between GC implementations.
In both call-seqs, the return value of GC.config
will be a Hash
containing the most recent full configuration, i.e., all keys and values defined by the specific GC implementation being used. In the case of a config update, the return value will include the new values being updated.
This method is only expected to work on CRuby.
The GC.config
hash can also contain keys that are global and read-only. These keys are not specific to any one GC library implementation and attempting to write to them will raise ArgumentError
.
There is currently only one global, read-only key:
Returns a String
containing the name of the currently loaded GC library, if one has been loaded using RUBY_GC_LIBRARY
, and “default” in all other cases
GC libraries are expected to document their own configuration. Valid keys for Ruby’s default GC implementation are:
Controls whether the GC is allowed to run a full mark (young & old objects).
When true
, GC interleaves major and minor collections. This is the default. GC will function as intended.
When false
, the GC will never trigger a full marking cycle unless explicitly requested by user code. Instead, only a minor mark will run—only young objects will be marked. When the heap space is exhausted, new pages will be allocated immediately instead of running a full mark.
A flag will be set to notify that a full mark has been requested. This flag is accessible using GC.latest_gc_info(:needs_major_by)
The user can trigger a major collection at any time using GC.start(full_mark: true)
When false
, Young to Old object promotion is disabled. For performance reasons, it is recommended to warm up an application using Process.warmup
before setting this parameter to false
.
Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width
leading spaces for labels on each line. Prints caption
at the top of the report, and uses format
to format each line. (Note: caption
must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)
Returns an array of Benchmark::Tms
objects.
If the block returns an array of Benchmark::Tms
objects, these will be used to format additional lines of output. If labels
parameter are given, these are used to label these extra lines.
Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark
, and the bm
and bmbm
methods.
Example:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
Generates:
user system total real for: 0.970000 0.000000 0.970000 ( 0.970493) times: 0.990000 0.000000 0.990000 ( 0.989542) upto: 0.970000 0.000000 0.970000 ( 0.972854) >total: 2.930000 0.000000 2.930000 ( 2.932889) >avg: 0.976667 0.000000 0.976667 ( 0.977630)
Returns the elapsed real time used to execute the given block. The unit of time is seconds.
Benchmark.realtime { "a" * 1_000_000_000 } #=> 0.5098029999935534
Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width
leading spaces for labels on each line. Prints caption
at the top of the report, and uses format
to format each line. (Note: caption
must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)
Returns an array of Benchmark::Tms
objects.
If the block returns an array of Benchmark::Tms
objects, these will be used to format additional lines of output. If labels
parameter are given, these are used to label these extra lines.
Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark
, and the bm
and bmbm
methods.
Example:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
Generates:
user system total real for: 0.970000 0.000000 0.970000 ( 0.970493) times: 0.990000 0.000000 0.990000 ( 0.989542) upto: 0.970000 0.000000 0.970000 ( 0.972854) >total: 2.930000 0.000000 2.930000 ( 2.932889) >avg: 0.976667 0.000000 0.976667 ( 0.977630)
Returns the elapsed real time used to execute the given block. The unit of time is seconds.
Benchmark.realtime { "a" * 1_000_000_000 } #=> 0.5098029999935534
Retrieve the PathSupport
object that RubyGems uses to lookup files.