Returns true
if self
contains only ASCII characters, false
otherwise:
'abc'.ascii_only? # => true "abc\u{6666}".ascii_only? # => false
Returns the dirpath
string that was used to create self
(or nil
if created by method Dir.for_fd
):
Dir.new('example').path # => "example"
Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string is given, in which case it will be used as the starting point. If the given pathname starts with a “~
” it is NOT expanded, it is treated as a normal directory name.
File.absolute_path("~oracle/bin") #=> "<relative_path>/~oracle/bin"
Returns true
if file_name
is an absolute path, and false
otherwise.
File.absolute_path?("c:/foo") #=> false (on Linux), true (on Windows)
Returns true
if the named file is writable by the real user and group id of this process. See access(3).
Note that some OS-level security features may cause this to return true even though the file is not writable by the real user/group.
If file_name is writable by others, returns an integer representing the file permission bits of file_name. Returns nil
otherwise. The meaning of the bits is platform dependent; on Unix systems, see stat(2)
.
file_name can be an IO
object.
File.world_writable?("/tmp") #=> 511 m = File.world_writable?("/tmp") sprintf("%o", m) #=> "777"
Returns the locale charmap name. It returns nil if no appropriate information.
Debian GNU/Linux LANG=C Encoding.locale_charmap #=> "ANSI_X3.4-1968" LANG=ja_JP.EUC-JP Encoding.locale_charmap #=> "EUC-JP" SunOS 5 LANG=C Encoding.locale_charmap #=> "646" LANG=ja Encoding.locale_charmap #=> "eucJP"
The result is highly platform dependent. So Encoding.find(Encoding.locale_charmap)
may cause an error. If you need some encoding object even for unknown locale, Encoding.find
(“locale”) can be used.
Iterates the given block for each element with an index, which starts from offset
. If no block is given, returns a new Enumerator
that includes the index, starting from offset
offset
the starting index to use
Iterates the given block for each element with an arbitrary object, obj
, and returns obj
If no block is given, returns a new Enumerator
.
to_three = Enumerator.new do |y| 3.times do |x| y << x end end to_three_with_string = to_three.with_object("foo") to_three_with_string.each do |x,string| puts "#{string}: #{x}" end # => foo: 0 # => foo: 1 # => foo: 2
Returns the singleton class of obj. This method creates a new singleton class if obj does not have one.
If obj is nil
, true
, or false
, it returns NilClass
, TrueClass
, or FalseClass
, respectively. If obj is an Integer
, a Float
or a Symbol
, it raises a TypeError
.
Object.new.singleton_class #=> #<Class:#<Object:0xb7ce1e24>> String.singleton_class #=> #<Class:String> nil.singleton_class #=> NilClass
Returns an array of the names of singleton methods for obj. If the optional all parameter is true, the list will include methods in modules included in obj. Only public and protected singleton methods are returned.
module Other def three() end end class Single def Single.four() end end a = Single.new def a.one() end class << a include Other def two() end end Single.singleton_methods #=> [:four] a.singleton_methods(false) #=> [:two, :one] a.singleton_methods #=> [:two, :one, :three]
Returns an array of instance variable names for the receiver. Note that simply defining an accessor does not create the corresponding instance variable.
class Fred attr_accessor :a1 def initialize @iv = 3 end end Fred.new.instance_variables #=> [:@iv]
Similar to method, searches singleton method only.
class Demo def initialize(n) @iv = n end def hello() "Hello, @iv = #{@iv}" end end k = Demo.new(99) def k.hi "Hi, @iv = #{@iv}" end m = k.singleton_method(:hi) m.call #=> "Hi, @iv = 99" m = k.singleton_method(:hello) #=> NameError
Returns true
if obj responds to the given method. Private and protected methods are included in the search only if the optional second parameter evaluates to true
.
If the method is not implemented, as Process.fork
on Windows, File.lchmod
on GNU/Linux, etc., false is returned.
If the method is not defined, respond_to_missing?
method is called and the result is returned.
When the method name parameter is given as a string, the string is converted to a symbol.
Methods Exception#as_json
and Exception.json_create
may be used to serialize and deserialize a Exception object; see Marshal
.
Method Exception#as_json
serializes self
, returning a 2-element hash representing self
:
require 'json/add/exception' x = Exception.new('Foo').as_json # => {"json_class"=>"Exception", "m"=>"Foo", "b"=>nil}
Method JSON.create
deserializes such a hash, returning a Exception object:
Exception.json_create(x) # => #<Exception: Foo>
Returns a JSON
string representing self
:
require 'json/add/exception' puts Exception.new('Foo').to_json
Output:
{"json_class":"Exception","m":"Foo","b":null}
Return a list of the local variable names defined where this NameError
exception was raised.
Internal use only.
Invoked as a callback whenever a constant is assigned on the receiver
module Chatty def self.const_added(const_name) super puts "Added #{const_name.inspect}" end FOO = 1 end
produces:
Added :FOO
Creates an accessor method to allow assignment to the attribute symbol.id2name
. String
arguments are converted to symbols. Returns an array of defined method names as symbols.
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo class Bar VAL = 10 end class Baz < Bar; end end Object.const_get 'Foo::Baz::VAL' # => 10 Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_get 'foobar' #=> NameError: wrong constant name foobar
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself Float.const_defined?("String") #=> true, found in Object (ancestor) BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true
is returned directly without autoloading:
module Admin autoload :User, 'admin/user' end Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor) IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. For example, consider:
def Foo.const_missing(name) name # return the constant name as Symbol end Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
As the example above shows, const_missing
is not required to create the missing constant in mod, though that is often a side-effect. The caller gets its return value when triggered. If the constant is also defined, further lookups won’t hit const_missing
and will return the value stored in the constant as usual. Otherwise, const_missing
will be invoked again.
In the next example, when a reference is made to an undefined constant, const_missing
attempts to load a file whose path is the lowercase version of the constant name (thus class Fred
is assumed to be in file fred.rb
). If defined as a side-effect of loading the file, the method returns the value stored in the constant. This implements an autoload feature similar to Kernel#autoload
and Module#autoload
, though it differs in important ways.
def Object.const_missing(name) @looked_for ||= {} str_name = name.to_s raise "Constant not found: #{name}" if @looked_for[str_name] @looked_for[str_name] = 1 file = str_name.downcase require file const_get(name, false) end