Results for: "module_function"

Each element in the returned enumerator is a 2-element array consisting of:

So that:

Example:

e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
# The enumerator elements.
e.next # => [0, [0, 1, 2]]
e.next # => [1, [3, 4, 5]]
e.next # => [2, [6, 7, 8]]
e.next # => [3, [9, 10]]

Method chunk is especially useful for an enumerable that is already sorted. This example counts words for each initial letter in a large array of words:

# Get sorted words from a web page.
url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
words = URI::open(url).readlines
# Make chunks, one for each letter.
e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
# Display 'A' through 'F'.
e.each {|c, words| p [c, words.length]; break if c == 'F' }

Output:

["A", 17096]
["B", 11070]
["C", 19901]
["D", 10896]
["E", 8736]
["F", 6860]

You can use the special symbol :_alone to force an element into its own separate chuck:

a = [0, 0, 1, 1]
e = a.chunk{|i| i.even? ? :_alone : true }
e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]

For example, you can put each line that contains a URL into its own chunk:

pattern = /http/
open(filename) { |f|
  f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
    pp lines
  }
}

You can use the special symbol :_separator or nil to force an element to be ignored (not included in any chunk):

a = [0, 0, -1, 1, 1]
e = a.chunk{|i| i < 0 ? :_separator : true }
e.to_a # => [[true, [0, 0]], [true, [1, 1]]]

Note that the separator does end the chunk:

a = [0, 0, -1, 1, -1, 1]
e = a.chunk{|i| i < 0 ? :_separator : true }
e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]

For example, the sequence of hyphens in svn log can be eliminated as follows:

sep = "-"*72 + "\n"
IO.popen("svn log README") { |f|
  f.chunk { |line|
    line != sep || nil
  }.each { |_, lines|
    pp lines
  }
}
#=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Update the portability section.\n",
#    "\n"]
#   ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
#    "\n",
#    "* README, README.ja: Add a note about default C flags.\n",
#    "\n"]
#   ...

Paragraphs separated by empty lines can be parsed as follows:

File.foreach("README").chunk { |line|
  /\A\s*\z/ !~ line || nil
}.each { |_, lines|
  pp lines
}

With no block, returns a new array containing only unique elements; the array has no two elements e0 and e1 such that e0.eql?(e1):

%w[a b c c b a a b c].uniq       # => ["a", "b", "c"]
[0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]

With a block, returns a new array containing elements only for which the block returns a unique value:

a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
a = %w[a b c d e e d c b a a b c d e]
a.uniq {|c| c < 'c' }         # => ["a", "c"]

Returns an array of all non-nil elements:

a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil]
a.compact # => [0, "a", false, false, "a", 0]

Returns true if coverage stats are currently being collected (after Coverage.start call, but before Coverage.result call)

Returns system configuration directory.

This is typically "/etc", but is modified by the prefix used when Ruby was compiled. For example, if Ruby is built and installed in /usr/local, returns "/usr/local/etc" on other platforms than Windows.

On Windows, this always returns the directory provided by the system.

Returns the system information obtained by uname system call.

The return value is a hash which has 5 keys at least:

:sysname, :nodename, :release, :version, :machine

Example:

require 'etc'
require 'pp'

pp Etc.uname
#=> {:sysname=>"Linux",
#    :nodename=>"boron",
#    :release=>"2.6.18-6-xen-686",
#    :version=>"#1 SMP Thu Nov 5 19:54:42 UTC 2009",
#    :machine=>"i686"}

Returns system configuration variable using sysconf().

name should be a constant under Etc which begins with SC_.

The return value is an integer or nil. nil means indefinite limit. (sysconf() returns -1 but errno is not set.)

Etc.sysconf(Etc::SC_ARG_MAX) #=> 2097152
Etc.sysconf(Etc::SC_LOGIN_NAME_MAX) #=> 256

Returns system configuration variable using confstr().

name should be a constant under Etc which begins with CS_.

The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)

Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin"

# GNU/Linux
Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18"
Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"

Returns the Ruby object stored at the memory address addr

Example:

x = Object.new
# => #<Object:0x0000000107c7d870>
Fiddle.dlwrap(x)
# => 4425504880
Fiddle.dlunwrap(_)
# => #<Object:0x0000000107c7d870>

Encodes string using String.encode.

Decode the given gzipped string.

This method is almost equivalent to the following code:

def gunzip(string)
  sio = StringIO.new(string)
  gz = Zlib::GzipReader.new(sio, encoding: Encoding::ASCII_8BIT)
  gz.read
ensure
  gz&.close
end

See also Zlib.gzip

With string object given, returns true if path is a string path leading to a directory, or to a symbolic link to a directory; false otherwise:

File.directory?('.')              # => true
File.directory?('foo')            # => false
File.symlink('.', 'dirlink')      # => 0
File.directory?('dirlink')        # => true
File.symlink('t,txt', 'filelink') # => 0
File.directory?('filelink')       # => false

Argument path can be an IO object.

Returns true if the named file has the sticky bit set.

file_name can be an IO object.

Returns true if the named files are identical.

file_1 and file_2 can be an IO object.

open("a", "w") {}
p File.identical?("a", "a")      #=> true
p File.identical?("a", "./a")    #=> true
File.link("a", "b")
p File.identical?("a", "b")      #=> true
File.symlink("a", "c")
p File.identical?("a", "c")      #=> true
open("d", "w") {}
p File.identical?("a", "d")      #=> false

Returns the number of times GC has occurred since the process started.

Sets or gets information about the current GC config.

Configuration parameters are GC implementation-specific and may change without notice.

This method can be called without parameters to retrieve the current config as a Hash with Symbol keys.

This method can also be called with a Hash argument to assign values to valid config keys. Config keys missing from the passed Hash will be left unmodified.

If a key/value pair is passed to this function that does not correspond to a valid config key for the GC implementation being used, no config will be updated, the key will be present in the returned Hash, and its value will be nil. This is to facilitate easy migration between GC implementations.

In both call-seqs, the return value of GC.config will be a Hash containing the most recent full configuration, i.e., all keys and values defined by the specific GC implementation being used. In the case of a config update, the return value will include the new values being updated.

This method is only expected to work on CRuby.

GC Implementation independent values

The GC.config hash can also contain keys that are global and read-only. These keys are not specific to any one GC library implementation and attempting to write to them will raise ArgumentError.

There is currently only one global, read-only key:

implementation

Returns a String containing the name of the currently loaded GC library, if one has been loaded using RUBY_GC_LIBRARY, and “default” in all other cases

GC Implementation specific values

GC libraries are expected to document their own configuration. Valid keys for Ruby’s default GC implementation are:

rgengc_allow_full_mark

Controls whether the GC is allowed to run a full mark (young & old objects).

When true, GC interleaves major and minor collections. This is the default. GC will function as intended.

When false, the GC will never trigger a full marking cycle unless explicitly requested by user code. Instead, only a minor mark will run—only young objects will be marked. When the heap space is exhausted, new pages will be allocated immediately instead of running a full mark.

A flag will be set to notify that a full mark has been requested. This flag is accessible using GC.latest_gc_info(:needs_major_by)

The user can trigger a major collection at any time using GC.start(full_mark: true)

When false, Young to Old object promotion is disabled. For performance reasons, it is recommended to warm up an application using Process.warmup before setting this parameter to false.

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Returns the elapsed real time used to execute the given block. The unit of time is seconds.

Benchmark.realtime { "a" * 1_000_000_000 }
#=> 0.5098029999935534

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Returns the elapsed real time used to execute the given block. The unit of time is seconds.

Benchmark.realtime { "a" * 1_000_000_000 }
#=> 0.5098029999935534

Prints the amount of time the supplied block takes to run using the debug UI output.

No documentation available
No documentation available

Skips the current file or directory, restarting the loop with the next entry. If the current file is a directory, that directory will not be recursively entered. Meaningful only within the block associated with Find::find.

See the Find module documentation for an example.

Skips the current file or directory, restarting the loop with the next entry. If the current file is a directory, that directory will not be recursively entered. Meaningful only within the block associated with Find::find.

See the Find module documentation for an example.

Search took: 7ms  ·  Total Results: 5441