Results for: "module_function"

Returns the system information obtained by uname system call.

The return value is a hash which has 5 keys at least:

:sysname, :nodename, :release, :version, :machine

Example:

require 'etc'
require 'pp'

pp Etc.uname
#=> {:sysname=>"Linux",
#    :nodename=>"boron",
#    :release=>"2.6.18-6-xen-686",
#    :version=>"#1 SMP Thu Nov 5 19:54:42 UTC 2009",
#    :machine=>"i686"}

Returns system configuration variable using sysconf().

name should be a constant under Etc which begins with SC_.

The return value is an integer or nil. nil means indefinite limit. (sysconf() returns -1 but errno is not set.)

Etc.sysconf(Etc::SC_ARG_MAX) #=> 2097152
Etc.sysconf(Etc::SC_LOGIN_NAME_MAX) #=> 256

Returns system configuration variable using confstr().

name should be a constant under Etc which begins with CS_.

The return value is a string or nil. nil means no configuration-defined value. (confstr() returns 0 but errno is not set.)

Etc.confstr(Etc::CS_PATH) #=> "/bin:/usr/bin"

# GNU/Linux
Etc.confstr(Etc::CS_GNU_LIBC_VERSION) #=> "glibc 2.18"
Etc.confstr(Etc::CS_GNU_LIBPTHREAD_VERSION) #=> "NPTL 2.18"

Returns the Ruby object stored at the memory address addr

Example:

x = Object.new
# => #<Object:0x0000000107c7d870>
Fiddle.dlwrap(x)
# => 4425504880
Fiddle.dlunwrap(_)
# => #<Object:0x0000000107c7d870>

Encodes string using String.encode.

Decode the given gzipped string.

This method is almost equivalent to the following code:

def gunzip(string)
  sio = StringIO.new(string)
  gz = Zlib::GzipReader.new(sio, encoding: Encoding::ASCII_8BIT)
  gz.read
ensure
  gz&.close
end

See also Zlib.gzip

With string object given, returns true if path is a string path leading to a directory, or to a symbolic link to a directory; false otherwise:

File.directory?('.')              # => true
File.directory?('foo')            # => false
File.symlink('.', 'dirlink')      # => 0
File.directory?('dirlink')        # => true
File.symlink('t,txt', 'filelink') # => 0
File.directory?('filelink')       # => false

Argument path can be an IO object.

Returns true if the named file has the sticky bit set.

file_name can be an IO object.

Returns true if the named files are identical.

file_1 and file_2 can be an IO object.

open("a", "w") {}
p File.identical?("a", "a")      #=> true
p File.identical?("a", "./a")    #=> true
File.link("a", "b")
p File.identical?("a", "b")      #=> true
File.symlink("a", "c")
p File.identical?("a", "c")      #=> true
open("d", "w") {}
p File.identical?("a", "d")      #=> false

This function compacts objects together in Ruby’s heap. It eliminates unused space (or fragmentation) in the heap by moving objects in to that unused space.

The returned hash contains statistics about the objects that were moved; see GC.latest_compact_info.

This method is only expected to work on CRuby.

To test whether GC compaction is supported, use the idiom:

GC.respond_to?(:compact)

The number of times GC occurred.

It returns the number of times GC occurred since the process started.

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Returns the elapsed real time used to execute the given block.

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Returns the elapsed real time used to execute the given block.

Prints the amount of time the supplied block takes to run using the debug UI output.

No documentation available
No documentation available

Skips the current file or directory, restarting the loop with the next entry. If the current file is a directory, that directory will not be recursively entered. Meaningful only within the block associated with Find::find.

See the Find module documentation for an example.

Skips the current file or directory, restarting the loop with the next entry. If the current file is a directory, that directory will not be recursively entered. Meaningful only within the block associated with Find::find.

See the Find module documentation for an example.

No documentation available
No documentation available

Raises a TypeError to prevent cloning.

No documentation available

Returns the singleton instance.

Search took: 7ms  ·  Total Results: 5313