Removes each element for which the block returns a truthy value.
Returns self
if any elements removed:
a = [:foo, 'bar', 2, 'bat'] a.reject! {|element| element.to_s.start_with?('b') } # => [:foo, 2]
Returns nil
if no elements removed.
Returns a new Enumerator
if no block given:
a = [:foo, 'bar', 2] a.reject! # => #<Enumerator: [:foo, "bar", 2]:reject!>
Replaces the content of self
with the content of other_array
; returns self
:
a = [:foo, 'bar', 2] a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]
Prepends the given objects
to self
:
a = [:foo, 'bar', 2] a.unshift(:bam, :bat) # => [:bam, :bat, :foo, "bar", 2]
Calculates the set of unambiguous abbreviations for the strings in self
.
require 'abbrev' %w{ car cone }.abbrev #=> {"car"=>"car", "ca"=>"car", "cone"=>"cone", "con"=>"cone", "co"=>"cone"}
The optional pattern
parameter is a pattern or a string. Only input strings that match the pattern or start with the string are included in the output hash.
%w{ fast boat day }.abbrev(/^.a/) #=> {"fast"=>"fast", "fas"=>"fast", "fa"=>"fast", "day"=>"day", "da"=>"day"} Abbrev.abbrev(%w{car box cone}, "ca") #=> {"car"=>"car", "ca"=>"car"}
See also Abbrev.abbrev
Returns the predecessor of self
(equivalent to self - 1
):
1.pred #=> 0 -1.pred #=> -2
Related: Integer#succ
(successor value).
Returns self
modulo other
as a real number.
For integer n
and real number r
, these expressions are equivalent:
n % r n-r*(n/r).floor n.divmod(r)[1]
See Numeric#divmod
.
Examples:
10 % 2 # => 0 10 % 3 # => 1 10 % 4 # => 2 10 % -2 # => 0 10 % -3 # => -2 10 % -4 # => -2 10 % 3.0 # => 1.0 10 % Rational(3, 1) # => (1/1)
Returns a 2-element array [q, r]
, where
q = (self/other).floor # Quotient r = self % other # Remainder
Examples:
11.divmod(4) # => [2, 3] 11.divmod(-4) # => [-3, -1] -11.divmod(4) # => [-3, 1] -11.divmod(-4) # => [2, -3] 12.divmod(4) # => [3, 0] 12.divmod(-4) # => [-3, 0] -12.divmod(4) # => [-3, 0] -12.divmod(-4) # => [3, 0] 13.divmod(4.0) # => [3, 1.0] 13.divmod(Rational(4, 1)) # => [3, (1/1)]
Returns true
if self
is an even number, false
otherwise.
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric
, or an instance of one of its subclasses: Complex, Float
, Integer
, Rational
; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric
, or an instance of one of its subclasses: Complex, Float
, Integer
, Rational
; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
Returns the real value for self
:
Complex(7).real #=> 7 Complex(9, -4).real #=> 9
If self
was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
Returns the array [self.real, self.imag]
:
Complex.rect(1, 2).rect # => [1, 2]
If self
was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
Complex#rectangular
is an alias for Complex#rect
.
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric
, or an instance of one of its subclasses: Complex, Float
, Integer
, Rational
; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
Returns false
; for compatibility with Numeric#real?
.
Returns array [self, 0]
.
Returns array [self, 0]
.
Returns a 2-element array [q, r]
, where
q = (self/other).floor # Quotient r = self % other # Remainder
Of the Core and Standard Library classes, only Rational
uses this implementation.
Examples:
Rational(11, 1).divmod(4) # => [2, (3/1)] Rational(11, 1).divmod(-4) # => [-3, (-1/1)] Rational(-11, 1).divmod(4) # => [-3, (1/1)] Rational(-11, 1).divmod(-4) # => [2, (-3/1)] Rational(12, 1).divmod(4) # => [3, (0/1)] Rational(12, 1).divmod(-4) # => [-3, (0/1)] Rational(-12, 1).divmod(4) # => [-3, (0/1)] Rational(-12, 1).divmod(-4) # => [3, (0/1)] Rational(13, 1).divmod(4.0) # => [3, 1.0] Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
Returns self
modulo other
as a real number.
Of the Core and Standard Library classes, only Rational
uses this implementation.
For Rational
r
and real number n
, these expressions are equivalent:
r % n r-n*(r/n).floor r.divmod(n)[1]
See Numeric#divmod
.
Examples:
r = Rational(1, 2) # => (1/2) r2 = Rational(2, 3) # => (2/3) r % r2 # => (1/2) r % 2 # => (1/2) r % 2.0 # => 0.5 r = Rational(301,100) # => (301/100) r2 = Rational(7,5) # => (7/5) r % r2 # => (21/100) r % -r2 # => (-119/100) (-r) % r2 # => (119/100) (-r) %-r2 # => (-21/100)
Returns true
if self
is greater than 0, false
otherwise.
Returns true
if self
is less than 0, false
otherwise.
Returns true
if self
is a real number (i.e. not Complex
).
Returns self
.
Returns true
if the length of self
is zero, false
otherwise:
"hello".empty? # => false " ".empty? # => false "".empty? # => true
Replaces the contents of self
with the contents of other_string
:
s = 'foo' # => "foo" s.replace('bar') # => "bar"
Prepends each string in other_strings
to self
and returns self
:
s = 'foo' s.prepend('bar', 'baz') # => "barbazfoo" s # => "barbazfoo"
Related: String#concat
.