Results for: "Logger"

Represents writing to a local variable in a context that doesn’t have an explicit value.

foo, bar = baz
^^^  ^^^

Represents an implicit set of parameters through the use of numbered parameters within a block or lambda.

-> { _1 + _2 }
^^^^^^^^^^^^^^
No documentation available

An SimpleRenewer allows a TupleSpace to check if a TupleEntry is still alive.

A RingServer allows a Rinda::TupleSpace to be located via UDP broadcasts. Default service location uses the following steps:

  1. A RingServer begins listening on the network broadcast UDP address.

  2. A RingFinger sends a UDP packet containing the DRb URI where it will listen for a reply.

  3. The RingServer receives the UDP packet and connects back to the provided DRb URI with the DRb service.

A RingServer requires a TupleSpace:

ts = Rinda::TupleSpace.new
rs = Rinda::RingServer.new

RingServer can also listen on multicast addresses for announcements. This allows multiple RingServers to run on the same host. To use network broadcast and multicast:

ts = Rinda::TupleSpace.new
rs = Rinda::RingServer.new ts, %w[Socket::INADDR_ANY, 239.0.0.1 ff02::1]

RingFinger is used by RingServer clients to discover the RingServer’s TupleSpace. Typically, all a client needs to do is call RingFinger.primary to retrieve the remote TupleSpace, which it can then begin using.

To find the first available remote TupleSpace:

Rinda::RingFinger.primary

To create a RingFinger that broadcasts to a custom list:

rf = Rinda::RingFinger.new  ['localhost', '192.0.2.1']
rf.primary

Rinda::RingFinger also understands multicast addresses and sets them up properly. This allows you to run multiple RingServers on the same host:

rf = Rinda::RingFinger.new ['239.0.0.1']
rf.primary

You can set the hop count (or TTL) for multicast searches using multicast_hops.

If you use IPv6 multicast you may need to set both an address and the outbound interface index:

rf = Rinda::RingFinger.new ['ff02::1']
rf.multicast_interface = 1
rf.primary

At this time there is no easy way to get an interface index by name.

The command manager registers and installs all the individual sub-commands supported by the gem command.

Extra commands can be provided by writing a rubygems_plugin.rb file in an installed gem. You should register your command against the Gem::CommandManager instance, like this:

# file rubygems_plugin.rb
require 'rubygems/command_manager'

Gem::CommandManager.instance.register_command :edit

You should put the implementation of your command in rubygems/commands.

# file rubygems/commands/edit_command.rb
class Gem::Commands::EditCommand < Gem::Command
  # ...
end

See Gem::Command for instructions on writing gem commands.

Raised when RubyGems is unable to load or activate a gem. Contains the name and version requirements of the gem that either conflicts with already activated gems or that RubyGems is otherwise unable to activate.

Raised when trying to activate a gem, and the gem exists on the system, but not the requested version. Instead of rescuing from this class, make sure to rescue from the superclass Gem::LoadError to catch all types of load errors.

Signals that a file permission error is preventing the user from operating on the given directory.

No documentation available
No documentation available

Raised by Gem::Validator when something is not right in a gem.

Raised by Gem::WebauthnListener when an error occurs during security device verification.

Run an instance of the gem program.

Gem::GemRunner is only intended for internal use by RubyGems itself. It does not form any public API and may change at any time for any reason.

If you would like to duplicate functionality of ‘gem` commands, use the classes they call directly.

No documentation available

Capture parse errors from Ripper

Prism returns the errors with their messages, but Ripper does not. To get them we must make a custom subclass.

Example:

puts RipperErrors.new(" def foo").call.errors
# => ["syntax error, unexpected end-of-input, expecting ';' or '\\n'"]

Base class for all URI classes. Implements generic URI syntax as per RFC 2396.

Raised when an attempt is made to send a message to a closed port, or to retrieve a message from a closed and empty port. Ports may be closed explicitly with Ractor#close_outgoing/close_incoming and are closed implicitly when a Ractor terminates.

r = Ractor.new { sleep(500) }
r.close_outgoing
r.take # Ractor::ClosedError

ClosedError is a descendant of StopIteration, so the closing of the ractor will break the loops without propagating the error:

r = Ractor.new do
  loop do
    msg = receive # raises ClosedError and loop traps it
    puts "Received: #{msg}"
  end
  puts "loop exited"
end

3.times{|i| r << i}
r.close_incoming
r.take
puts "Continue successfully"

This will print:

Received: 0
Received: 1
Received: 2
loop exited
Continue successfully

Raised by Encoding and String methods when a transcoding operation fails.

Encoding conversion class.

No documentation available

Flags for integer nodes that correspond to the base of the integer.

Utility methods for using the RubyGems API.

The WebauthnListener class retrieves an OTP after a user successfully WebAuthns with the Gem host. An instance opens a socket using the TCPServer instance given and listens for a request from the Gem host. The request should be a GET request to the root path and contains the OTP code in the form of a query parameter ‘code`. The listener will return the code which will be used as the OTP for API requests.

Types of responses sent by the listener after receiving a request:

- 200 OK: OTP code was successfully retrieved
- 204 No Content: If the request was an OPTIONS request
- 400 Bad Request: If the request did not contain a query parameter `code`
- 404 Not Found: The request was not to the root path
- 405 Method Not Allowed: OTP code was not retrieved because the request was not a GET/OPTIONS request

Example usage:

thread = Gem::WebauthnListener.listener_thread("https://rubygems.example", server)
thread.join
otp = thread[:otp]
error = thread[:error]

The WebauthnListener Response class is used by the WebauthnListener to create responses to be sent to the Gem host. It creates a Gem::Net::HTTPResponse instance when initialized and can be converted to the appropriate format to be sent by a socket using ‘to_s`. Gem::Net::HTTPResponse instances cannot be directly sent over a socket.

Types of response classes:

- OkResponse
- NoContentResponse
- BadRequestResponse
- NotFoundResponse
- MethodNotAllowedResponse

Example usage:

server = TCPServer.new(0)
socket = server.accept

response = OkResponse.for("https://rubygems.example")
socket.print response.to_s
socket.close

The WebauthnPoller class retrieves an OTP after a user successfully WebAuthns. An instance polls the Gem host for the OTP code. The polling request (api/v1/webauthn_verification/<webauthn_token>/status.json) is sent to the Gem host every 5 seconds and will timeout after 5 minutes. If the status field in the json response is “success”, the code field will contain the OTP code.

Example usage:

thread = Gem::WebauthnPoller.poll_thread(
  {},
  "RubyGems.org",
  "https://rubygems.org/api/v1/webauthn_verification/odow34b93t6aPCdY",
  { email: "email@example.com", password: "password" }
)
thread.join
otp = thread[:otp]
error = thread[:error]

Helper methods for both Gem::Installer and Gem::Uninstaller

Search took: 3ms  ·  Total Results: 2737