Compile a InterpolatedMatchLastLineNode
node
Dispatch enter and leave events for InterpolatedMatchLastLineNode
nodes and continue walking the tree.
Copy a InterpolatedMatchLastLineNode
node
The logical inverse of ‘capture_last_end_same_indent`
When there is an invalid block with an ‘end` missing a keyword right after another `end`, it is unclear where which end is missing the keyword.
Take this example:
class Dog # 1 puts "woof" # 2 end # 3 end # 4
the problem line will be identified as:
> end # 4
This happens because lines 1, 2, and 3 are technically valid code and are expanded first, deemed valid, and hidden. We need to un-hide the matching keyword on line 1. Also work backwards and if there’s a mis-matched end, show it too
Returns a new lazy enumerator with the concatenated results of running block
once for every element in the lazy enumerator.
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force #=> ["f", "o", "o", "b", "a", "r"]
A value x
returned by block
is decomposed if either of the following conditions is true:
x
responds to both each and force, which means that x
is a lazy enumerator.
x
is an array or responds to to_ary.
Otherwise, x
is contained as-is in the return value.
[{a:1}, {b:2}].lazy.flat_map {|i| i}.force #=> [{:a=>1}, {:b=>2}]
Returns a new lazy enumerator with the concatenated results of running block
once for every element in the lazy enumerator.
["foo", "bar"].lazy.flat_map {|i| i.each_char.lazy}.force #=> ["f", "o", "o", "b", "a", "r"]
A value x
returned by block
is decomposed if either of the following conditions is true:
x
responds to both each and force, which means that x
is a lazy enumerator.
x
is an array or responds to to_ary.
Otherwise, x
is contained as-is in the return value.
[{a:1}, {b:2}].lazy.flat_map {|i| i}.force #=> [{:a=>1}, {:b=>2}]
If a block is given, returns a lazy enumerator that will iterate over the given block for each element with an index, which starts from offset
, and returns a lazy enumerator that yields the same values (without the index).
If a block is not given, returns a new lazy enumerator that includes the index, starting from offset
.
offset
the starting index to use
Like Enumerable#map
, but chains operation to be lazy-evaluated.
(1..Float::INFINITY).lazy.map {|i| i**2 } #=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map> (1..Float::INFINITY).lazy.map {|i| i**2 }.first(3) #=> [1, 4, 9]
Like Enumerable#map
, but chains operation to be lazy-evaluated.
(1..Float::INFINITY).lazy.map {|i| i**2 } #=> #<Enumerator::Lazy: #<Enumerator::Lazy: 1..Infinity>:map> (1..Float::INFINITY).lazy.map {|i| i**2 }.first(3) #=> [1, 4, 9]
Like Enumerable#select
, but chains operation to be lazy-evaluated.
Like Enumerable#select
, but chains operation to be lazy-evaluated.
Like Enumerable#reject
, but chains operation to be lazy-evaluated.
Like Enumerable#grep
, but chains operation to be lazy-evaluated.
Like Enumerable#grep_v
, but chains operation to be lazy-evaluated.
Like Enumerable#zip
, but chains operation to be lazy-evaluated. However, if a block is given to zip, values are enumerated immediately.
Like Enumerable#take
, but chains operation to be lazy-evaluated.
Like Enumerable#drop
, but chains operation to be lazy-evaluated.
Like Enumerable#uniq
, but chains operation to be lazy-evaluated.
Return the length of the hash value in bytes.
Return the block length of the digest in bytes.
Return the block length of the digest in bytes.
Digest::SHA256.new.block_length * 8 # => 512 Digest::SHA384.new.block_length * 8 # => 1024 Digest::SHA512.new.block_length * 8 # => 1024
Return the length of the hash value (the digest) in bytes.
Digest::SHA256.new.digest_length * 8 # => 256 Digest::SHA384.new.digest_length * 8 # => 384 Digest::SHA512.new.digest_length * 8 # => 512
For example, digests produced by Digest::SHA256 will always be 32 bytes (256 bits) in size.
Enable a call to dlclose() when this handle is garbage collected.
Returns true
if dlclose() will be called when this handle is garbage collected.
See man(3) dlclose() for more info.