Results for: "String# "

Returns a human-readable description of the underlying method.

"cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
(1..3).method(:map).inspect    #=> "#<Method: Range(Enumerable)#map()>"

In the latter case, the method description includes the “owner” of the original method (Enumerable module, which is included into Range).

inspect also provides, when possible, method argument names (call sequence) and source location.

require 'net/http'
Net::HTTP.method(:get).inspect
#=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"

... in argument definition means argument is optional (has some default value).

For methods defined in C (language core and extensions), location and argument names can’t be extracted, and only generic information is provided in form of * (any number of arguments) or _ (some positional argument).

"cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
"cat".method(:+).inspect       #=> "#<Method: String#+(_)>""

Dissociates meth from its current receiver. The resulting UnboundMethod can subsequently be bound to a new object of the same class (see UnboundMethod).

Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.

class C
  def one;    end
  def two(a); end
  def three(*a);  end
  def four(a, b); end
  def five(a, b, *c);    end
  def six(a, b, *c, &d); end
  def seven(a, b, x:0); end
  def eight(x:, y:); end
  def nine(x:, y:, **z); end
  def ten(*a, x:, y:); end
end
c = C.new
c.method(:one).arity     #=> 0
c.method(:two).arity     #=> 1
c.method(:three).arity   #=> -1
c.method(:four).arity    #=> 2
c.method(:five).arity    #=> -3
c.method(:six).arity     #=> -3
c.method(:seven).arity   #=> -3
c.method(:eight).arity   #=> 1
c.method(:nine).arity    #=> 1
c.method(:ten).arity     #=> -2

"cat".method(:size).arity      #=> 0
"cat".method(:replace).arity   #=> 1
"cat".method(:squeeze).arity   #=> -1
"cat".method(:count).arity     #=> -1

Returns a human-readable description of the underlying method.

"cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
(1..3).method(:map).inspect    #=> "#<Method: Range(Enumerable)#map()>"

In the latter case, the method description includes the “owner” of the original method (Enumerable module, which is included into Range).

inspect also provides, when possible, method argument names (call sequence) and source location.

require 'net/http'
Net::HTTP.method(:get).inspect
#=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"

... in argument definition means argument is optional (has some default value).

For methods defined in C (language core and extensions), location and argument names can’t be extracted, and only generic information is provided in form of * (any number of arguments) or _ (some positional argument).

"cat".method(:count).inspect   #=> "#<Method: String#count(*)>"
"cat".method(:+).inspect       #=> "#<Method: String#+(_)>""

Bind umeth to obj. If Klass was the class from which umeth was obtained, obj.kind_of?(Klass) must be true.

class A
  def test
    puts "In test, class = #{self.class}"
  end
end
class B < A
end
class C < B
end

um = B.instance_method(:test)
bm = um.bind(C.new)
bm.call
bm = um.bind(B.new)
bm.call
bm = um.bind(A.new)
bm.call

produces:

In test, class = C
In test, class = B
prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
 from prog.rb:16
No documentation available

returns main ractor

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list   #=> [#<Thread:0x401bdf4c run>]

Basically the same as ::new. However, if class Thread is subclassed, then calling start in that subclass will not invoke the subclass’s initialize method.

Returns the main thread.

Stops execution of the current thread, putting it into a “sleep” state, and schedules execution of another thread.

a = Thread.new { print "a"; Thread.stop; print "c" }
sleep 0.1 while a.status!='sleep'
print "b"
a.run
a.join
#=> "abc"

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }
Thread.new { 1000000.times {|i| i*i } }
Thread.new { Thread.stop }
Thread.list.each {|t| p t}

This will produce:

#<Thread:0x401b3e84 sleep>
#<Thread:0x401b3f38 run>
#<Thread:0x401b3fb0 sleep>
#<Thread:0x401bdf4c run>

The calling thread will suspend execution and run this thr.

Does not return until thr exits or until the given limit seconds have passed.

If the time limit expires, nil will be returned, otherwise thr is returned.

Any threads not joined will be killed when the main program exits.

If thr had previously raised an exception and the ::abort_on_exception or $DEBUG flags are not set, (so the exception has not yet been processed), it will be processed at this time.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }
x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }
x.join # Let thread x finish, thread a will be killed on exit.
#=> "axyz"

The following example illustrates the limit parameter.

y = Thread.new { 4.times { sleep 0.1; puts 'tick... ' }}
puts "Waiting" until y.join(0.15)

This will produce:

tick...
Waiting
tick...
Waiting
tick...
tick...

Terminates thr and schedules another thread to be run, returning the terminated Thread. If this is the main thread, or the last thread, exits the process.

Returns the status of thr.

"sleep"

Returned if this thread is sleeping or waiting on I/O

"run"

When this thread is executing

"aborting"

If this thread is aborting

false

When this thread is terminated normally

nil

If terminated with an exception.

a = Thread.new { raise("die now") }
b = Thread.new { Thread.stop }
c = Thread.new { Thread.exit }
d = Thread.new { sleep }
d.kill                  #=> #<Thread:0x401b3678 aborting>
a.status                #=> nil
b.status                #=> "sleep"
c.status                #=> false
d.status                #=> "aborting"
Thread.current.status   #=> "run"

See also the instance methods alive? and stop?

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }
b = Thread.current
a.stop?   #=> true
b.stop?   #=> false

See also alive? and status.

Returns the current backtrace of the target thread.

Dump the name, id, and status of thr to a string.

Return a string containing a human-readable TracePoint status.

Returns internal information of TracePoint.

The contents of the returned value are implementation specific. It may be changed in future.

This method is only for debugging TracePoint itself.

A convenience method for TracePoint.new, that activates the trace automatically.

trace = TracePoint.trace(:call) { |tp| [tp.lineno, tp.event] }
#=> #<TracePoint:enabled>

trace.enabled? #=> true

Line number of the event

Uses the character cmd to perform various tests on file1 (first table below) or on file1 and file2 (second table).

File tests on a single file:

Cmd    Returns   Meaning
"A"  | Time    | Last access time for file1
"b"  | boolean | True if file1 is a block device
"c"  | boolean | True if file1 is a character device
"C"  | Time    | Last change time for file1
"d"  | boolean | True if file1 exists and is a directory
"e"  | boolean | True if file1 exists
"f"  | boolean | True if file1 exists and is a regular file
"g"  | boolean | True if file1 has the setgid bit set
"G"  | boolean | True if file1 exists and has a group
     |         | ownership equal to the caller's group
"k"  | boolean | True if file1 exists and has the sticky bit set
"l"  | boolean | True if file1 exists and is a symbolic link
"M"  | Time    | Last modification time for file1
"o"  | boolean | True if file1 exists and is owned by
     |         | the caller's effective uid
"O"  | boolean | True if file1 exists and is owned by
     |         | the caller's real uid
"p"  | boolean | True if file1 exists and is a fifo
"r"  | boolean | True if file1 is readable by the effective
     |         | uid/gid of the caller
"R"  | boolean | True if file is readable by the real
     |         | uid/gid of the caller
"s"  | int/nil | If file1 has nonzero size, return the size,
     |         | otherwise return nil
"S"  | boolean | True if file1 exists and is a socket
"u"  | boolean | True if file1 has the setuid bit set
"w"  | boolean | True if file1 exists and is writable by
     |         | the effective uid/gid
"W"  | boolean | True if file1 exists and is writable by
     |         | the real uid/gid
"x"  | boolean | True if file1 exists and is executable by
     |         | the effective uid/gid
"X"  | boolean | True if file1 exists and is executable by
     |         | the real uid/gid
"z"  | boolean | True if file1 exists and has a zero length

Tests that take two files:

"-"  | boolean | True if file1 and file2 are identical
"="  | boolean | True if the modification times of file1
     |         | and file2 are equal
"<"  | boolean | True if the modification time of file1
     |         | is prior to that of file2
">"  | boolean | True if the modification time of file1
     |         | is after that of file2

Equivalent to method Kernel#gets, except that it raises an exception if called at end-of-stream:

$ cat t.txt | ruby -e "p readlines; readline"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
in `readline': end of file reached (EOFError)

Optional keyword argument chomp specifies whether line separators are to be omitted.

Returns an array containing the lines returned by calling Kernel#gets until the end-of-stream is reached; (see Line IO).

With only string argument sep given, returns the remaining lines as determined by line separator sep, or nil if none; see Line Separator:

# Default separator.
$ cat t.txt | ruby -e "p readlines"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]

# Specified separator.
$ cat t.txt | ruby -e "p readlines 'li'"
["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"]

# Get-all separator.
$ cat t.txt | ruby -e "p readlines nil"
["First line\nSecond line\n\nFourth line\nFifth line\n"]

# Get-paragraph separator.
$ cat t.txt | ruby -e "p readlines ''"
["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]

With only integer argument limit given, limits the number of bytes in the line; see Line Limit:

$cat t.txt | ruby -e "p readlines 10"
["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"]

$cat t.txt | ruby -e "p readlines 11"
["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"]

$cat t.txt | ruby -e "p readlines 12"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]

With arguments sep and limit given, combines the two behaviors; see Line Separator and Line Limit.

Optional keyword argument chomp specifies whether line separators are to be omitted:

$ cat t.txt | ruby -e "p readlines(chomp: true)"
["First line", "Second line", "", "Fourth line", "Fifth line"]

Optional keyword arguments enc_opts specify encoding options; see Encoding options.

Search took: 6ms  ·  Total Results: 3654