Results for: "module_function"

Returns running OLE Automation object or WIN32OLE object from moniker. 1st argument should be OLE program id or class id or moniker.

WIN32OLE.connect('Excel.Application') # => WIN32OLE object which represents running Excel.
No documentation available

Returns revision information for the erb.rb module.

Version

Returns the values in self as an array, to use in pattern matching:

Measure = Data.define(:amount, :unit)

distance = Measure[10, 'km']
distance.deconstruct #=> [10, "km"]

# usage
case distance
in n, 'km' # calls #deconstruct underneath
  puts "It is #{n} kilometers away"
else
  puts "Don't know how to handle it"
end
# prints "It is 10 kilometers away"

Or, with checking the class, too:

case distance
in Measure(n, 'km')
  puts "It is #{n} kilometers away"
# ...
end

Returns the array of captures, which are all matches except m[0]:

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
# => #<MatchData "HX1138" 1:"H" 2:"X" 3:"113" 4:"8">
m[0]       # => "HX1138"
m.captures # => ["H", "X", "113", "8"]

Related: MatchData.to_a.

No documentation available
No documentation available
No documentation available

Establishes proc on thr as the handler for tracing, or disables tracing if the parameter is nil.

See Kernel#set_trace_func.

Adds proc as a handler for tracing.

See Thread#set_trace_func and Kernel#set_trace_func.

Establishes proc as the handler for tracing, or disables tracing if the parameter is nil.

Note: this method is obsolete, please use TracePoint instead.

proc takes up to six parameters:

proc is invoked whenever an event occurs.

Events are:

"c-call"

call a C-language routine

"c-return"

return from a C-language routine

"call"

call a Ruby method

"class"

start a class or module definition

"end"

finish a class or module definition

"line"

execute code on a new line

"raise"

raise an exception

"return"

return from a Ruby method

Tracing is disabled within the context of proc.

class Test
  def test
    a = 1
    b = 2
  end
end

set_trace_func proc { |event, file, line, id, binding, class_or_module|
  printf "%8s %s:%-2d %16p %14p\n", event, file, line, id, class_or_module
}
t = Test.new
t.test

Produces:

c-return prog.rb:8   :set_trace_func         Kernel
    line prog.rb:11              nil            nil
  c-call prog.rb:11             :new          Class
  c-call prog.rb:11      :initialize    BasicObject
c-return prog.rb:11      :initialize    BasicObject
c-return prog.rb:11             :new          Class
    line prog.rb:12              nil            nil
    call prog.rb:2             :test           Test
    line prog.rb:3             :test           Test
    line prog.rb:4             :test           Test
  return prog.rb:5             :test           Test

Returns the class for the given object.

class A
  def foo
    ObjectSpace::trace_object_allocations do
      obj = Object.new
      p "#{ObjectSpace::allocation_class_path(obj)}"
    end
  end
end

A.new.foo #=> "Class"

See ::trace_object_allocations for more information and examples.

No documentation available

Iterates over strongly connected component in the subgraph reachable from node.

Return value is unspecified.

each_strongly_connected_component_from doesn’t call tsort_each_node.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component_from(2) {|scc| p scc }
#=> [4]
#   [2, 3]

Iterates over strongly connected components in a graph. The graph is represented by node and each_child.

node is the first node. each_child should have call method which takes a node argument and yields for each child node.

Return value is unspecified.

TSort.each_strongly_connected_component_from is a class method and it doesn’t need a class to represent a graph which includes TSort.

graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_child = lambda {|n, &b| graph[n].each(&b) }
TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  p scc
}
#=> [4]
#   [2, 3]
#   [1]

Create a new RescueModifierNode node

Returns a 2-element array [q, r], where

q = (self/other).floor    # Quotient
r = self % other          # Remainder

Examples:

11.divmod(4)              # => [2, 3]
11.divmod(-4)             # => [-3, -1]
-11.divmod(4)             # => [-3, 1]
-11.divmod(-4)            # => [2, -3]

12.divmod(4)              # => [3, 0]
12.divmod(-4)             # => [-3, 0]
-12.divmod(4)             # => [-3, 0]
-12.divmod(-4)            # => [3, 0]

13.divmod(4.0)            # => [3, 1.0]
13.divmod(Rational(4, 1)) # => [3, (1/1)]

Returns a 2-element array [q, r], where

q = (self/other).floor                  # Quotient
r = self % other                        # Remainder

Of the Core and Standard Library classes, only Rational uses this implementation.

Examples:

Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]

Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]

Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]

Returns a 2-element array [q, r], where

q = (self/other).floor      # Quotient
r = self % other            # Remainder

Examples:

11.0.divmod(4)              # => [2, 3.0]
11.0.divmod(-4)             # => [-3, -1.0]
-11.0.divmod(4)             # => [-3, 1.0]
-11.0.divmod(-4)            # => [2, -3.0]

12.0.divmod(4)              # => [3, 0.0]
12.0.divmod(-4)             # => [-3, 0.0]
-12.0.divmod(4)             # => [-3, -0.0]
-12.0.divmod(-4)            # => [3, -0.0]

13.0.divmod(4.0)            # => [3, 1.0]
13.0.divmod(Rational(4, 1)) # => [3, 1.0]

Changes permission bits on the named file(s) to the bit pattern represented by mode_int. Actual effects are operating system dependent (see the beginning of this section). On Unix systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "out")   #=> 2

Equivalent to File::chmod, but does not follow symbolic links (so it will change the permissions associated with the link, not the file referenced by the link). Often not available.

Changes permission bits on file to the bit pattern represented by mode_int. Actual effects are platform dependent; on Unix systems, see chmod(2) for details. Follows symbolic links. Also see File#lchmod.

f = File.new("out", "w");
f.chmod(0644)   #=> 0

Creates an infinite enumerator from any block, just called over and over. The result of the previous iteration is passed to the next one. If initial is provided, it is passed to the first iteration, and becomes the first element of the enumerator; if it is not provided, the first iteration receives nil, and its result becomes the first element of the iterator.

Raising StopIteration from the block stops an iteration.

Enumerator.produce(1, &:succ)   # => enumerator of 1, 2, 3, 4, ....

Enumerator.produce { rand(10) } # => infinite random number sequence

ancestors = Enumerator.produce(node) { |prev| node = prev.parent or raise StopIteration }
enclosing_section = ancestors.find { |n| n.type == :section }

Using ::produce together with Enumerable methods like Enumerable#detect, Enumerable#slice_after, Enumerable#take_while can provide Enumerator-based alternatives for while and until cycles:

# Find next Tuesday
require "date"
Enumerator.produce(Date.today, &:succ).detect(&:tuesday?)

# Simple lexer:
require "strscan"
scanner = StringScanner.new("7+38/6")
PATTERN = %r{\d+|[-/+*]}
Enumerator.produce { scanner.scan(PATTERN) }.slice_after { scanner.eos? }.first
# => ["7", "+", "38", "/", "6"]

Returns an integer representing the mode settings for exception handling and rounding.

These modes control exception handling:

Values for setting for exception handling:

You can use method BigDecimal.save_exception_mode to temporarily change, and then automatically restore, exception modes.

For clarity, some examples below begin by setting all exception modes to false.

This mode controls the way rounding is to be performed:

You can use method BigDecimal.save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.

NaNs

Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.

Settings:

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN')                                 # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true)  # => 2
BigDecimal('NaN') # Raises FloatDomainError

Infinities

Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
BigDecimal('Infinity')                                # => Infinity
BigDecimal('-Infinity')                               # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity')  # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError

Underflow

Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)      # => 0
def flow_under
  x = BigDecimal('0.1')
  100.times { x *= x }
end
flow_under                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError

Overflow

Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
def flow_over
  x = BigDecimal('10')
  100.times { x *= x }
end
flow_over                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError

Zero Division

Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)       # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero                                              # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError

All Exceptions

Mode BigDecimal::EXCEPTION_ALL controls all of the above:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true)  # => 23

Rounding

Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:

Search took: 14ms  ·  Total Results: 4789