EncodingError
is the base class for encoding errors.
An OpenStruct
is a data structure, similar to a Hash
, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.
require "ostruct" person = OpenStruct.new person.name = "John Smith" person.age = 70 person.name # => "John Smith" person.age # => 70 person.address # => nil
An OpenStruct
employs a Hash
internally to store the attributes and values and can even be initialized with one:
australia = OpenStruct.new(:country => "Australia", :capital => "Canberra") # => #<OpenStruct country="Australia", capital="Canberra">
Hash
keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*
) will not be immediately available on the OpenStruct
object as a method for retrieval or assignment, but can still be reached through the Object#send
method or using [].
measurements = OpenStruct.new("length (in inches)" => 24) measurements[:"length (in inches)"] # => 24 measurements.send("length (in inches)") # => 24 message = OpenStruct.new(:queued? => true) message.queued? # => true message.send("queued?=", false) message.queued? # => false
Removing the presence of an attribute requires the execution of the delete_field
method as setting the property value to nil
will not remove the attribute.
first_pet = OpenStruct.new(:name => "Rowdy", :owner => "John Smith") second_pet = OpenStruct.new(:name => "Rowdy") first_pet.owner = nil first_pet # => #<OpenStruct name="Rowdy", owner=nil> first_pet == second_pet # => false first_pet.delete_field(:owner) first_pet # => #<OpenStruct name="Rowdy"> first_pet == second_pet # => true
Ractor
compatibility: A frozen OpenStruct
with shareable values is itself shareable.
An OpenStruct
utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.
This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash
or a Struct
. Creating an open struct from a small Hash
and accessing a few of the entries can be 200 times slower than accessing the hash directly.
This is a potential security issue; building OpenStruct
from untrusted user data (e.g. JSON
web request) may be susceptible to a “symbol denial of service” attack since the keys create methods and names of methods are never garbage collected.
This may also be the source of incompatibilities between Ruby versions:
o = OpenStruct.new o.then # => nil in Ruby < 2.6, enumerator for Ruby >= 2.6
Builtin methods may be overwritten this way, which may be a source of bugs or security issues:
o = OpenStruct.new o.methods # => [:to_h, :marshal_load, :marshal_dump, :each_pair, ... o.methods = [:foo, :bar] o.methods # => [:foo, :bar]
To help remedy clashes, OpenStruct
uses only protected/private methods ending with !
and defines aliases for builtin public methods by adding a !
:
o = OpenStruct.new(make: 'Bentley', class: :luxury) o.class # => :luxury o.class! # => OpenStruct
It is recommended (but not enforced) to not use fields ending in !
; Note that a subclass’ methods may not be overwritten, nor can OpenStruct’s own methods ending with !
.
For all these reasons, consider not using OpenStruct
at all.
A regular expression (also called a regexp) is a match pattern (also simply called a pattern).
A common notation for a regexp uses enclosing slash characters:
/foo/
A regexp may be applied to a target string; The part of the string (if any) that matches the pattern is called a match, and may be said to match:
re = /red/ re.match?('redirect') # => true # Match at beginning of target. re.match?('bored') # => true # Match at end of target. re.match?('credit') # => true # Match within target. re.match?('foo') # => false # No match.
A regexp may be used:
To extract substrings based on a given pattern:
re = /foo/ # => /foo/ re.match('food') # => #<MatchData "foo"> re.match('good') # => nil
See sections Method match and Operator =~.
To determine whether a string matches a given pattern:
re.match?('food') # => true re.match?('good') # => false
See section Method match?.
As an argument for calls to certain methods in other classes and modules; most such methods accept an argument that may be either a string or the (much more powerful) regexp.
See Regexp Methods.
A regexp object has:
A source; see Sources.
Several modes; see Modes.
A timeout; see Timeouts.
An encoding; see Encodings.
A regular expression may be created with:
A regexp literal using slash characters (see Regexp Literals):
# This is a very common usage. /foo/ # => /foo/
A %r
regexp literal (see Regexp Literals):
# Same delimiter character at beginning and end; # useful for avoiding escaping characters %r/name\/value pair/ # => /name\/value pair/ %r:name/value pair: # => /name\/value pair/ %r|name/value pair| # => /name\/value pair/ # Certain "paired" characters can be delimiters. %r[foo] # => /foo/ %r{foo} # => /foo/ %r(foo) # => /foo/ %r<foo> # => /foo/
Method Regexp.new
.
match
Each of the methods Regexp#match
, String#match
, and Symbol#match
returns a MatchData
object if a match was found, nil
otherwise; each also sets global variables:
'food'.match(/foo/) # => #<MatchData "foo"> 'food'.match(/bar/) # => nil
=~
Each of the operators Regexp#=~
, String#=~
, and Symbol#=~
returns an integer offset if a match was found, nil
otherwise; each also sets global variables:
/bar/ =~ 'foo bar' # => 4 'foo bar' =~ /bar/ # => 4 /baz/ =~ 'foo bar' # => nil
match?
Each of the methods Regexp#match?
, String#match?
, and Symbol#match?
returns true
if a match was found, false
otherwise; none sets global variables:
'food'.match?(/foo/) # => true 'food'.match?(/bar/) # => false
Certain regexp-oriented methods assign values to global variables:
#match
: see Method match.
#=~
: see Operator =~.
The affected global variables are:
$~
: Returns a MatchData
object, or nil
.
$&
: Returns the matched part of the string, or nil
.
$`
: Returns the part of the string to the left of the match, or nil
.
$'
: Returns the part of the string to the right of the match, or nil
.
$+
: Returns the last group matched, or nil
.
$1
, $2
, etc.: Returns the first, second, etc., matched group, or nil
. Note that $0
is quite different; it returns the name of the currently executing program.
Examples:
# Matched string, but no matched groups. 'foo bar bar baz'.match('bar') $~ # => #<MatchData "bar"> $& # => "bar" $` # => "foo " $' # => " bar baz" $+ # => nil $1 # => nil # Matched groups. /s(\w{2}).*(c)/.match('haystack') $~ # => #<MatchData "stac" 1:"ta" 2:"c"> $& # => "stac" $` # => "hay" $' # => "k" $+ # => "c" $1 # => "ta" $2 # => "c" $3 # => nil # No match. 'foo'.match('bar') $~ # => nil $& # => nil $` # => nil $' # => nil $+ # => nil $1 # => nil
Note that Regexp#match?
, String#match?
, and Symbol#match?
do not set global variables.
As seen above, the simplest regexp uses a literal expression as its source:
re = /foo/ # => /foo/ re.match('food') # => #<MatchData "foo"> re.match('good') # => nil
A rich collection of available subexpressions gives the regexp great power and flexibility:
Regexp special characters, called metacharacters, have special meanings in certain contexts; depending on the context, these are sometimes metacharacters:
. ? - + * ^ \ | $ ( ) [ ] { }
To match a metacharacter literally, backslash-escape it:
# Matches one or more 'o' characters. /o+/.match('foo') # => #<MatchData "oo"> # Would match 'o+'. /o\+/.match('foo') # => nil
To match a backslash literally, backslash-escape it:
/\./.match('\.') # => #<MatchData "."> /\\./.match('\.') # => #<MatchData "\\.">
Method
Regexp.escape
returns an escaped string:
Regexp.escape('.?-+*^\|$()[]{}') # => "\\.\\?\\-\\+\\*\\^\\\\\\|\\$\\(\\)\\[\\]\\{\\}"
The source literal largely behaves like a double-quoted string; see Regexp Literals.
In particular, a source literal may contain interpolated expressions:
s = 'foo' # => "foo" /#{s}/ # => /foo/ /#{s.capitalize}/ # => /Foo/ /#{2 + 2}/ # => /4/
There are differences between an ordinary string literal and a source literal; see Shorthand Character Classes.
\s
in an ordinary string literal is equivalent to a space character; in a source literal, it’s shorthand for matching a whitespace character.
In an ordinary string literal, these are (needlessly) escaped characters; in a source literal, they are shorthands for various matching characters:
\w \W \d \D \h \H \S \R
A character class is delimited by square brackets; it specifies that certain characters match at a given point in the target string:
# This character class will match any vowel. re = /B[aeiou]rd/ re.match('Bird') # => #<MatchData "Bird"> re.match('Bard') # => #<MatchData "Bard"> re.match('Byrd') # => nil
A character class may contain hyphen characters to specify ranges of characters:
# These regexps have the same effect. /[abcdef]/.match('foo') # => #<MatchData "f"> /[a-f]/.match('foo') # => #<MatchData "f"> /[a-cd-f]/.match('foo') # => #<MatchData "f">
When the first character of a character class is a caret (^
), the sense of the class is inverted: it matches any character except those specified.
/[^a-eg-z]/.match('f') # => #<MatchData "f">
A character class may contain another character class. By itself this isn’t useful because [a-z[0-9]]
describes the same set as [a-z0-9]
.
However, character classes also support the &&
operator, which performs set intersection on its arguments. The two can be combined as follows:
/[a-w&&[^c-g]z]/ # ([a-w] AND ([^c-g] OR z))
This is equivalent to:
/[abh-w]/
Each of the following metacharacters serves as a shorthand for a character class:
/./
: Matches any character except a newline:
/./.match('foo') # => #<MatchData "f"> /./.match("\n") # => nil
/./m
: Matches any character, including a newline; see Multiline Mode:
/./m.match("\n") # => #<MatchData "\n">
/\w/
: Matches a word character: equivalent to [a-zA-Z0-9_]
:
/\w/.match(' foo') # => #<MatchData "f"> /\w/.match(' _') # => #<MatchData "_"> /\w/.match(' ') # => nil
/\W/
: Matches a non-word character: equivalent to [^a-zA-Z0-9_]
:
/\W/.match(' ') # => #<MatchData " "> /\W/.match('_') # => nil
/\d/
: Matches a digit character: equivalent to [0-9]
:
/\d/.match('THX1138') # => #<MatchData "1"> /\d/.match('foo') # => nil
/\D/
: Matches a non-digit character: equivalent to [^0-9]
:
/\D/.match('123Jump!') # => #<MatchData "J"> /\D/.match('123') # => nil
/\h/
: Matches a hexdigit character: equivalent to [0-9a-fA-F]
:
/\h/.match('xyz fedcba9876543210') # => #<MatchData "f"> /\h/.match('xyz') # => nil
/\H/
: Matches a non-hexdigit character: equivalent to [^0-9a-fA-F]
:
/\H/.match('fedcba9876543210xyz') # => #<MatchData "x"> /\H/.match('fedcba9876543210') # => nil
/\s/
: Matches a whitespace character: equivalent to /[ \t\r\n\f\v]/
:
/\s/.match('foo bar') # => #<MatchData " "> /\s/.match('foo') # => nil
/\S/
: Matches a non-whitespace character: equivalent to /[^ \t\r\n\f\v]/
:
/\S/.match(" \t\r\n\f\v foo") # => #<MatchData "f"> /\S/.match(" \t\r\n\f\v") # => nil
/\R/
: Matches a linebreak, platform-independently:
/\R/.match("\r") # => #<MatchData "\r"> # Carriage return (CR) /\R/.match("\n") # => #<MatchData "\n"> # Newline (LF) /\R/.match("\f") # => #<MatchData "\f"> # Formfeed (FF) /\R/.match("\v") # => #<MatchData "\v"> # Vertical tab (VT) /\R/.match("\r\n") # => #<MatchData "\r\n"> # CRLF /\R/.match("\u0085") # => #<MatchData "\u0085"> # Next line (NEL) /\R/.match("\u2028") # => #<MatchData "\u2028"> # Line separator (LSEP) /\R/.match("\u2029") # => #<MatchData "\u2029"> # Paragraph separator (PSEP)
An anchor is a metasequence that matches a zero-width position between characters in the target string.
For a subexpression with no anchor, matching may begin anywhere in the target string:
/real/.match('surrealist') # => #<MatchData "real">
For a subexpression with an anchor, matching must begin at the matched anchor.
Each of these anchors matches a boundary:
^
: Matches the beginning of a line:
/^bar/.match("foo\nbar") # => #<MatchData "bar"> /^ar/.match("foo\nbar") # => nil
$
: Matches the end of a line:
/bar$/.match("foo\nbar") # => #<MatchData "bar"> /ba$/.match("foo\nbar") # => nil
\A
: Matches the beginning of the string:
/\Afoo/.match('foo bar') # => #<MatchData "foo"> /\Afoo/.match(' foo bar') # => nil
\Z
: Matches the end of the string; if string ends with a single newline, it matches just before the ending newline:
/foo\Z/.match('bar foo') # => #<MatchData "foo"> /foo\Z/.match('foo bar') # => nil /foo\Z/.match("bar foo\n") # => #<MatchData "foo"> /foo\Z/.match("bar foo\n\n") # => nil
\z
: Matches the end of the string:
/foo\z/.match('bar foo') # => #<MatchData "foo"> /foo\z/.match('foo bar') # => nil /foo\z/.match("bar foo\n") # => nil
\b
: Matches word boundary when not inside brackets; matches backspace ("0x08"
) when inside brackets:
/foo\b/.match('foo bar') # => #<MatchData "foo"> /foo\b/.match('foobar') # => nil
\B
: Matches non-word boundary:
/foo\B/.match('foobar') # => #<MatchData "foo"> /foo\B/.match('foo bar') # => nil
\G
: Matches first matching position:
In methods like String#gsub
and String#scan
, it changes on each iteration. It initially matches the beginning of subject, and in each following iteration it matches where the last match finished.
" a b c".gsub(/ /, '_') # => "____a_b_c" " a b c".gsub(/\G /, '_') # => "____a b c"
In methods like Regexp#match
and String#match
that take an optional offset, it matches where the search begins.
"hello, world".match(/,/, 3) # => #<MatchData ","> "hello, world".match(/\G,/, 3) # => nil
Lookahead anchors:
(?=pat)
: Positive lookahead assertion: ensures that the following characters match pat, but doesn’t include those characters in the matched substring.
(?!pat)
: Negative lookahead assertion: ensures that the following characters do not match pat, but doesn’t include those characters in the matched substring.
Lookbehind anchors:
(?<=pat)
: Positive lookbehind assertion: ensures that the preceding characters match pat, but doesn’t include those characters in the matched substring.
(?<!pat)
: Negative lookbehind assertion: ensures that the preceding characters do not match pat, but doesn’t include those characters in the matched substring.
The pattern below uses positive lookahead and positive lookbehind to match text appearing in … tags without including the tags in the match:
/(?<=<b>)\w+(?=<\/b>)/.match("Fortune favors the <b>bold</b>.") # => #<MatchData "bold">
\K
: Match reset: the matched content preceding \K
in the regexp is excluded from the result. For example, the following two regexps are almost equivalent:
/ab\Kc/.match('abc') # => #<MatchData "c"> /(?<=ab)c/.match('abc') # => #<MatchData "c">
These match same string and $&
equals 'c'
, while the matched position is different.
As are the following two regexps:
/(a)\K(b)\Kc/ /(?<=(?<=(a))(b))c/
The vertical bar metacharacter (|
) may be used within parentheses to express alternation: two or more subexpressions any of which may match the target string.
Two alternatives:
re = /(a|b)/ re.match('foo') # => nil re.match('bar') # => #<MatchData "b" 1:"b">
Four alternatives:
re = /(a|b|c|d)/ re.match('shazam') # => #<MatchData "a" 1:"a"> re.match('cold') # => #<MatchData "c" 1:"c">
Each alternative is a subexpression, and may be composed of other subexpressions:
re = /([a-c]|[x-z])/ re.match('bar') # => #<MatchData "b" 1:"b"> re.match('ooz') # => #<MatchData "z" 1:"z">
Method Regexp.union
provides a convenient way to construct a regexp with alternatives.
A simple regexp matches one character:
/\w/.match('Hello') # => #<MatchData "H">
An added quantifier specifies how many matches are required or allowed:
*
- Matches zero or more times:
/\w*/.match('') # => #<MatchData ""> /\w*/.match('x') # => #<MatchData "x"> /\w*/.match('xyz') # => #<MatchData "yz">
+
- Matches one or more times:
/\w+/.match('') # => nil /\w+/.match('x') # => #<MatchData "x"> /\w+/.match('xyz') # => #<MatchData "xyz">
?
- Matches zero or one times:
/\w?/.match('') # => #<MatchData ""> /\w?/.match('x') # => #<MatchData "x"> /\w?/.match('xyz') # => #<MatchData "x">
{
n}
- Matches exactly n times:
/\w{2}/.match('') # => nil /\w{2}/.match('x') # => nil /\w{2}/.match('xyz') # => #<MatchData "xy">
{
min,}
- Matches min or more times:
/\w{2,}/.match('') # => nil /\w{2,}/.match('x') # => nil /\w{2,}/.match('xy') # => #<MatchData "xy"> /\w{2,}/.match('xyz') # => #<MatchData "xyz">
{,
max}
- Matches max or fewer times:
/\w{,2}/.match('') # => #<MatchData ""> /\w{,2}/.match('x') # => #<MatchData "x"> /\w{,2}/.match('xyz') # => #<MatchData "xy">
{
min,
max}
- Matches at least min times and at most max times:
/\w{1,2}/.match('') # => nil /\w{1,2}/.match('x') # => #<MatchData "x"> /\w{1,2}/.match('xyz') # => #<MatchData "xy">
Quantifier matching may be greedy, lazy, or possessive:
In greedy matching, as many occurrences as possible are matched while still allowing the overall match to succeed. Greedy quantifiers: *
, +
, ?
, {min, max}
and its variants.
In lazy matching, the minimum number of occurrences are matched. Lazy quantifiers: *?
, +?
, ??
, {min, max}?
and its variants.
In possessive matching, once a match is found, there is no backtracking; that match is retained, even if it jeopardises the overall match. Possessive quantifiers: *+
, ++
, ?+
. Note that {min, max}
and its variants do not support possessive matching.
More:
About greedy and lazy matching, see Choosing Minimal or Maximal Repetition.
About possessive matching, see Eliminate Needless Backtracking.
A simple regexp has (at most) one match:
re = /\d\d\d\d-\d\d-\d\d/ re.match('1943-02-04') # => #<MatchData "1943-02-04"> re.match('1943-02-04').size # => 1 re.match('foo') # => nil
Adding one or more pairs of parentheses, (subexpression)
, defines groups, which may result in multiple matched substrings, called captures:
re = /(\d\d\d\d)-(\d\d)-(\d\d)/ re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04"> re.match('1943-02-04').size # => 4
The first capture is the entire matched string; the other captures are the matched substrings from the groups.
A group may have a quantifier:
re = /July 4(th)?/ re.match('July 4') # => #<MatchData "July 4" 1:nil> re.match('July 4th') # => #<MatchData "July 4th" 1:"th"> re = /(foo)*/ re.match('') # => #<MatchData "" 1:nil> re.match('foo') # => #<MatchData "foo" 1:"foo"> re.match('foofoo') # => #<MatchData "foofoo" 1:"foo"> re = /(foo)+/ re.match('') # => nil re.match('foo') # => #<MatchData "foo" 1:"foo"> re.match('foofoo') # => #<MatchData "foofoo" 1:"foo">
The returned MatchData object gives access to the matched substrings:
re = /(\d\d\d\d)-(\d\d)-(\d\d)/ md = re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"1943" 2:"02" 3:"04"> md[0] # => "1943-02-04" md[1] # => "1943" md[2] # => "02" md[3] # => "04"
A group may be made non-capturing; it is still a group (and, for example, can have a quantifier), but its matching substring is not included among the captures.
A non-capturing group begins with ?:
(inside the parentheses):
# Don't capture the year. re = /(?:\d\d\d\d)-(\d\d)-(\d\d)/ md = re.match('1943-02-04') # => #<MatchData "1943-02-04" 1:"02" 2:"04">
A group match may also be referenced within the regexp itself; such a reference is called a backreference
:
/[csh](..) [csh]\1 in/.match('The cat sat in the hat') # => #<MatchData "cat sat in" 1:"at">
This table shows how each subexpression in the regexp above matches a substring in the target string:
| Subexpression in Regexp | Matching Substring in Target String | |---------------------------|-------------------------------------| | First '[csh]' | Character 'c' | | '(..)' | First substring 'at' | | First space ' ' | First space character ' ' | | Second '[csh]' | Character 's' | | '\1' (backreference 'at') | Second substring 'at' | | ' in' | Substring ' in' |
A regexp may contain any number of groups:
For a large number of groups:
The ordinary \n
notation applies only for n in range (1..9).
The MatchData[n]
notation applies for any non-negative n.
\0
is a special backreference, referring to the entire matched string; it may not be used within the regexp itself, but may be used outside it (for example, in a substitution method call):
'The cat sat in the hat'.gsub(/[csh]at/, '\0s') # => "The cats sats in the hats"
As seen above, a capture can be referred to by its number. A capture can also have a name, prefixed as ?<name>
or ?'name'
, and the name (symbolized) may be used as an index in MatchData[]
:
md = /\$(?<dollars>\d+)\.(?'cents'\d+)/.match("$3.67") # => #<MatchData "$3.67" dollars:"3" cents:"67"> md[:dollars] # => "3" md[:cents] # => "67" # The capture numbers are still valid. md[2] # => "67"
When a regexp contains a named capture, there are no unnamed captures:
/\$(?<dollars>\d+)\.(\d+)/.match("$3.67") # => #<MatchData "$3.67" dollars:"3">
A named group may be backreferenced as \k<name>
:
/(?<vowel>[aeiou]).\k<vowel>.\k<vowel>/.match('ototomy') # => #<MatchData "ototo" vowel:"o">
When (and only when) a regexp contains named capture groups and appears before the =~
operator, the captured substrings are assigned to local variables with corresponding names:
/\$(?<dollars>\d+)\.(?<cents>\d+)/ =~ '$3.67' dollars # => "3" cents # => "67"
Method Regexp#named_captures
returns a hash of the capture names and substrings; method Regexp#names
returns an array of the capture names.
A group may be made atomic with (?>
subexpression)
.
This causes the subexpression to be matched independently of the rest of the expression, so that the matched substring becomes fixed for the remainder of the match, unless the entire subexpression must be abandoned and subsequently revisited.
In this way subexpression is treated as a non-divisible whole. Atomic grouping is typically used to optimise patterns to prevent needless backtracking .
Example (without atomic grouping):
/".*"/.match('"Quote"') # => #<MatchData "\"Quote\"">
Analysis:
The leading subexpression "
in the pattern matches the first character "
in the target string.
The next subexpression .*
matches the next substring Quote“
(including the trailing double-quote).
Now there is nothing left in the target string to match the trailing subexpression "
in the pattern; this would cause the overall match to fail.
The matched substring is backtracked by one position: Quote
.
The final subexpression "
now matches the final substring "
, and the overall match succeeds.
If subexpression .*
is grouped atomically, the backtracking is disabled, and the overall match fails:
/"(?>.*)"/.match('"Quote"') # => nil
Atomic grouping can affect performance; see Atomic Group.
As seen above, a backreference number (\n
) or name (\k<name>
) gives access to a captured substring; the corresponding regexp subexpression may also be accessed, via the number (\gn
) or name (\g<name>
):
/\A(?<paren>\(\g<paren>*\))*\z/.match('(())') # ^1 # ^2 # ^3 # ^4 # ^5 # ^6 # ^7 # ^8 # ^9 # ^10
The pattern:
Matches at the beginning of the string, i.e. before the first character.
Enters a named group paren
.
Matches the first character in the string, '('
.
Calls the paren
group again, i.e. recurses back to the second step.
Re-enters the paren
group.
Matches the second character in the string, '('
.
Attempts to call paren
a third time, but fails because doing so would prevent an overall successful match.
Matches the third character in the string, ')'
; marks the end of the second recursive call
Matches the fourth character in the string, ')'
.
Matches the end of the string.
See Subexpression calls.
The conditional construct takes the form (?(cond)yes|no)
, where:
cond may be a capture number or name.
The match to be applied is yes if cond is captured; otherwise the match to be applied is no.
If not needed, |no
may be omitted.
Examples:
re = /\A(foo)?(?(1)(T)|(F))\z/ re.match('fooT') # => #<MatchData "fooT" 1:"foo" 2:"T" 3:nil> re.match('F') # => #<MatchData "F" 1:nil 2:nil 3:"F"> re.match('fooF') # => nil re.match('T') # => nil re = /\A(?<xyzzy>foo)?(?(<xyzzy>)(T)|(F))\z/ re.match('fooT') # => #<MatchData "fooT" xyzzy:"foo"> re.match('F') # => #<MatchData "F" xyzzy:nil> re.match('fooF') # => nil re.match('T') # => nil
The absence operator is a special group that matches anything which does not match the contained subexpressions.
/(?~real)/.match('surrealist') # => #<MatchData "surrea"> /(?~real)ist/.match('surrealist') # => #<MatchData "ealist"> /sur(?~real)ist/.match('surrealist') # => nil
The /\p{property_name}/
construct (with lowercase p
) matches characters using a Unicode property name, much like a character class; property Alpha
specifies alphabetic characters:
/\p{Alpha}/.match('a') # => #<MatchData "a"> /\p{Alpha}/.match('1') # => nil
A property can be inverted by prefixing the name with a caret character (^
):
/\p{^Alpha}/.match('1') # => #<MatchData "1"> /\p{^Alpha}/.match('a') # => nil
Or by using \P
(uppercase P
):
/\P{Alpha}/.match('1') # => #<MatchData "1"> /\P{Alpha}/.match('a') # => nil
See Unicode Properties for regexps based on the numerous properties.
Some commonly-used properties correspond to POSIX bracket expressions:
/\p{Alnum}/
: Alphabetic and numeric character
/\p{Alpha}/
: Alphabetic character
/\p{Blank}/
: Space or tab
/\p{Cntrl}/
: Control character
/\p{Digit}/
: Digit characters, and similar)
/\p{Lower}/
: Lowercase alphabetical character
/\p{Print}/
: Like \p{Graph}
, but includes the space character
/\p{Punct}/
: Punctuation character
/\p{Space}/
: Whitespace character ([:blank:]
, newline, carriage return, etc.)
/\p{Upper}/
: Uppercase alphabetical
/\p{XDigit}/
: Digit allowed in a hexadecimal number (i.e., 0-9a-fA-F)
These are also commonly used:
/\p{Emoji}/
: Unicode emoji.
/\p{Graph}/
: Non-blank character (excludes spaces, control characters, and similar).
/\p{Word}/
: A member in one of these Unicode character categories (see below) or having one of these Unicode properties:
Unicode categories:
Mark
(M
).
Decimal Number
(Nd
)
Connector Punctuation
(Pc
).
Unicode properties:
Alpha
Join_Control
/\p{ASCII}/
: A character in the ASCII character set.
/\p{Any}/
: Any Unicode character (including unassigned characters).
/\p{Assigned}/
: An assigned character.
A Unicode character category name:
May be either its full name or its abbreviated name.
Is case-insensitive.
Treats a space, a hyphen, and an underscore as equivalent.
Examples:
/\p{lu}/ # => /\p{lu}/ /\p{LU}/ # => /\p{LU}/ /\p{Uppercase Letter}/ # => /\p{Uppercase Letter}/ /\p{Uppercase_Letter}/ # => /\p{Uppercase_Letter}/ /\p{UPPERCASE-LETTER}/ # => /\p{UPPERCASE-LETTER}/
Below are the Unicode character category abbreviations and names. Enumerations of characters in each category are at the links.
Letters:
L
, Letter
: LC
, Lm
, or Lo
.
LC
, Cased_Letter
: Ll
, Lt
, or Lu
.
Marks:
M
, Mark
: Mc
, Me
, or Mn
.
Numbers:
N
, Number
: Nd
, Nl
, or No
.
Punctation:
P
, Punctuation
: Pc
, Pd
, Pe
, Pf
, Pi
, Po
, or Ps
.
S
, Symbol
: Sc
, Sk
, Sm
, or So
.
Z
, Separator
: Zl
, Zp
, or Zs
.
C
, Other
: Cc
, Cf
, Cn
, Co
, or Cs
.
Among the Unicode properties are:
A POSIX bracket expression is also similar to a character class. These expressions provide a portable alternative to the above, with the added benefit of encompassing non-ASCII characters:
/\d/
matches only ASCII decimal digits 0
through 9
.
/[[:digit:]]/
matches any character in the Unicode Decimal Number
(Nd
) category; see below.
The POSIX bracket expressions:
/[[:digit:]]/
: Matches a Unicode digit:
/[[:digit:]]/.match('9') # => #<MatchData "9"> /[[:digit:]]/.match("\u1fbf9") # => #<MatchData "9">
/[[:xdigit:]]/
: Matches a digit allowed in a hexadecimal number; equivalent to [0-9a-fA-F]
.
/[[:upper:]]/
: Matches a Unicode uppercase letter:
/[[:upper:]]/.match('A') # => #<MatchData "A"> /[[:upper:]]/.match("\u00c6") # => #<MatchData "Æ">
/[[:lower:]]/
: Matches a Unicode lowercase letter:
/[[:lower:]]/.match('a') # => #<MatchData "a"> /[[:lower:]]/.match("\u01fd") # => #<MatchData "ǽ">
/[[:alpha:]]/
: Matches /[[:upper:]]/
or /[[:lower:]]/
.
/[[:alnum:]]/
: Matches /[[:alpha:]]/
or /[[:digit:]]/
.
/[[:space:]]/
: Matches Unicode space character:
/[[:space:]]/.match(' ') # => #<MatchData " "> /[[:space:]]/.match("\u2005") # => #<MatchData " ">
/[[:blank:]]/
: Matches /[[:space:]]/
or tab character:
/[[:blank:]]/.match(' ') # => #<MatchData " "> /[[:blank:]]/.match("\u2005") # => #<MatchData " "> /[[:blank:]]/.match("\t") # => #<MatchData "\t">
/[[:cntrl:]]/
: Matches Unicode control character:
/[[:cntrl:]]/.match("\u0000") # => #<MatchData "\u0000"> /[[:cntrl:]]/.match("\u009f") # => #<MatchData "\u009F">
/[[:graph:]]/
: Matches any character except /[[:space:]]/
or /[[:cntrl:]]/
.
/[[:print:]]/
: Matches /[[:graph:]]/
or space character.
/[[:punct:]]/
: Matches any (Unicode punctuation character}[www.compart.com/en/unicode/category/Po]:
Ruby also supports these (non-POSIX) bracket expressions:
/[[:ascii:]]/
: Matches a character in the ASCII character set.
/[[:word:]]/
: Matches a character in one of these Unicode character categories or having one of these Unicode properties:
Unicode categories:
Mark
(M
).
Decimal Number
(Nd
)
Connector Punctuation
(Pc
).
Unicode properties:
Alpha
Join_Control
A comment may be included in a regexp pattern using the (?#
comment)
construct, where comment is a substring that is to be ignored. arbitrary text ignored by the regexp engine:
/foo(?#Ignore me)bar/.match('foobar') # => #<MatchData "foobar">
The comment may not include an unescaped terminator character.
See also Extended Mode.
Each of these modifiers sets a mode for the regexp:
i
: /pattern/i
sets Case-Insensitive Mode.
m
: /pattern/m
sets Multiline Mode.
x
: /pattern/x
sets Extended Mode.
o
: /pattern/o
sets Interpolation Mode.
Any, all, or none of these may be applied.
Modifiers i
, m
, and x
may be applied to subexpressions:
(?modifier)
turns the mode “on” for ensuing subexpressions
(?-modifier)
turns the mode “off” for ensuing subexpressions
(?modifier:subexp)
turns the mode “on” for subexp within the group
(?-modifier:subexp)
turns the mode “off” for subexp within the group
Example:
re = /(?i)te(?-i)st/ re.match('test') # => #<MatchData "test"> re.match('TEst') # => #<MatchData "TEst"> re.match('TEST') # => nil re.match('teST') # => nil re = /t(?i:e)st/ re.match('test') # => #<MatchData "test"> re.match('tEst') # => #<MatchData "tEst"> re.match('tEST') # => nil
Method Regexp#options
returns an integer whose value showing the settings for case-insensitivity mode, multiline mode, and extended mode.
By default, a regexp is case-sensitive:
/foo/.match('FOO') # => nil
Modifier i
enables case-insensitive mode:
/foo/i.match('FOO') # => #<MatchData "FOO">
Method Regexp#casefold?
returns whether the mode is case-insensitive.
The multiline-mode in Ruby is what is commonly called a “dot-all mode”:
Without the m
modifier, the subexpression .
does not match newlines:
/a.c/.match("a\nc") # => nil
With the modifier, it does match:
/a.c/m.match("a\nc") # => #<MatchData "a\nc">
Unlike other languages, the modifier m
does not affect the anchors ^
and $
. These anchors always match at line-boundaries in Ruby.
Modifier x
enables extended mode, which means that:
Literal white space in the pattern is to be ignored.
Character #
marks the remainder of its containing line as a comment, which is also to be ignored for matching purposes.
In extended mode, whitespace and comments may be used to form a self-documented regexp.
Regexp
not in extended mode (matches some Roman numerals):
pattern = '^M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$' re = /#{pattern}/ re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">
Regexp
in extended mode:
pattern = <<-EOT ^ # beginning of string M{0,3} # thousands - 0 to 3 Ms (CM|CD|D?C{0,3}) # hundreds - 900 (CM), 400 (CD), 0-300 (0 to 3 Cs), # or 500-800 (D, followed by 0 to 3 Cs) (XC|XL|L?X{0,3}) # tens - 90 (XC), 40 (XL), 0-30 (0 to 3 Xs), # or 50-80 (L, followed by 0 to 3 Xs) (IX|IV|V?I{0,3}) # ones - 9 (IX), 4 (IV), 0-3 (0 to 3 Is), # or 5-8 (V, followed by 0 to 3 Is) $ # end of string EOT re = /#{pattern}/x re.match('MCMXLIII') # => #<MatchData "MCMXLIII" 1:"CM" 2:"XL" 3:"III">
Modifier o
means that the first time a literal regexp with interpolations is encountered, the generated Regexp
object is saved and used for all future evaluations of that literal regexp. Without modifier o
, the generated Regexp
is not saved, so each evaluation of the literal regexp generates a new Regexp
object.
Without modifier o
:
def letters; sleep 5; /[A-Z][a-z]/; end words = %w[abc def xyz] start = Time.now words.each {|word| word.match(/\A[#{letters}]+\z/) } Time.now - start # => 15.0174892
With modifier o
:
start = Time.now words.each {|word| word.match(/\A[#{letters}]+\z/o) } Time.now - start # => 5.0010866
Note that if the literal regexp does not have interpolations, the o
behavior is the default.
By default, a regexp with only US-ASCII characters has US-ASCII encoding:
re = /foo/ re.source.encoding # => #<Encoding:US-ASCII> re.encoding # => #<Encoding:US-ASCII>
A regular expression containing non-US-ASCII characters is assumed to use the source encoding. This can be overridden with one of the following modifiers.
/pat/n
: US-ASCII if only containing US-ASCII characters, otherwise ASCII-8BIT:
/foo/n.encoding # => #<Encoding:US-ASCII> /foo\xff/n.encoding # => #<Encoding:ASCII-8BIT> /foo\x7f/n.encoding # => #<Encoding:US-ASCII>
/pat/u
: UTF-8
/foo/u.encoding # => #<Encoding:UTF-8>
/pat/e
: EUC-JP
/foo/e.encoding # => #<Encoding:EUC-JP>
/pat/s
: Windows-31J
/foo/s.encoding # => #<Encoding:Windows-31J>
A regexp can be matched against a target string when either:
They have the same encoding.
The regexp’s encoding is a fixed encoding and the string contains only ASCII characters. Method
Regexp#fixed_encoding?
returns whether the regexp has a fixed encoding.
If a match between incompatible encodings is attempted an Encoding::CompatibilityError
exception is raised.
Example:
re = eval("# encoding: ISO-8859-1\n/foo\\xff?/") re.encoding # => #<Encoding:ISO-8859-1> re =~ "foo".encode("UTF-8") # => 0 re =~ "foo\u0100" # Raises Encoding::CompatibilityError
The encoding may be explicitly fixed by including Regexp::FIXEDENCODING
in the second argument for Regexp.new
:
# Regexp with encoding ISO-8859-1. re = Regexp.new("a".force_encoding('iso-8859-1'), Regexp::FIXEDENCODING) re.encoding # => #<Encoding:ISO-8859-1> # Target string with encoding UTF-8. s = "a\u3042" s.encoding # => #<Encoding:UTF-8> re.match(s) # Raises Encoding::CompatibilityError.
When either a regexp source or a target string comes from untrusted input, malicious values could become a denial-of-service attack; to prevent such an attack, it is wise to set a timeout.
Regexp has two timeout values:
A class default timeout, used for a regexp whose instance timeout is nil
; this default is initially nil
, and may be set by method Regexp.timeout=
:
Regexp.timeout # => nil Regexp.timeout = 3.0 Regexp.timeout # => 3.0
An instance timeout, which defaults to nil
and may be set in Regexp.new
:
re = Regexp.new('foo', timeout: 5.0) re.timeout # => 5.0
When regexp.timeout is nil
, the timeout “falls through” to Regexp.timeout
; when regexp.timeout is non-nil
, that value controls timing out:
| regexp.timeout Value | Regexp.timeout Value | Result | |----------------------|----------------------|-----------------------------| | nil | nil | Never times out. | | nil | Float | Times out in Float seconds. | | Float | Any | Times out in Float seconds. |
For certain values of the pattern and target string, matching time can grow polynomially or exponentially in relation to the input size; the potential vulnerability arising from this is the regular expression denial-of-service (ReDoS) attack.
Regexp matching can apply an optimization to prevent ReDoS attacks. When the optimization is applied, matching time increases linearly (not polynomially or exponentially) in relation to the input size, and a ReDoS attach is not possible.
This optimization is applied if the pattern meets these criteria:
No backreferences.
No subexpression calls.
No nested lookaround anchors or atomic groups.
No nested quantifiers with counting (i.e. no nested {n}
, {min,}
, {,max}
, or {min,max}
style quantifiers)
You can use method Regexp.linear_time?
to determine whether a pattern meets these criteria:
Regexp.linear_time?(/a*/) # => true Regexp.linear_time?('a*') # => true Regexp.linear_time?(/(a*)\1/) # => false
However, an untrusted source may not be safe even if the method returns true
, because the optimization uses memoization (which may invoke large memory consumption).
Read (online PDF books):
Mastering Regular Expressions by Jeffrey E.F. Friedl.
Regular Expressions Cookbook by Jan Goyvaerts & Steven Levithan.
Explore, test (interactive online editor):
Class Struct provides a convenient way to create a simple class that can store and fetch values.
This example creates a subclass of Struct
, Struct::Customer
; the first argument, a string, is the name of the subclass; the other arguments, symbols, determine the members of the new subclass.
Customer = Struct.new('Customer', :name, :address, :zip) Customer.name # => "Struct::Customer" Customer.class # => Class Customer.superclass # => Struct
Corresponding to each member are two methods, a writer and a reader, that store and fetch values:
methods = Customer.instance_methods false methods # => [:zip, :address=, :zip=, :address, :name, :name=]
An instance of the subclass may be created, and its members assigned values, via method ::new
:
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe # => #<struct Struct::Customer name="Joe Smith", address="123 Maple, Anytown NC", zip=12345>
The member values may be managed thus:
joe.name # => "Joe Smith" joe.name = 'Joseph Smith' joe.name # => "Joseph Smith"
And thus; note that member name may be expressed as either a string or a symbol:
joe[:name] # => "Joseph Smith" joe[:name] = 'Joseph Smith, Jr.' joe['name'] # => "Joseph Smith, Jr."
See Struct::new
.
First, what’s elsewhere. Class Struct:
Inherits from class Object.
Includes module Enumerable, which provides dozens of additional methods.
See also Data
, which is a somewhat similar, but stricter concept for defining immutable value objects.
Here, class Struct provides methods that are useful for:
Struct
Subclass ::new
: Returns a new subclass of Struct.
==
: Returns whether a given object is equal to self
, using ==
to compare member values.
eql?
: Returns whether a given object is equal to self
, using eql?
to compare member values.
[]
: Returns the value associated with a given member name.
to_a
, values
, deconstruct
: Returns the member values in self
as an array.
deconstruct_keys
: Returns a hash of the name/value pairs for given member names.
dig
: Returns the object in nested objects that is specified by a given member name and additional arguments.
members
: Returns an array of the member names.
select
, filter
: Returns an array of member values from self
, as selected by the given block.
values_at
: Returns an array containing values for given member names.
[]=
: Assigns a given value to a given member name.
each
: Calls a given block with each member name.
each_pair
: Calls a given block with each member name/value pair.
SocketError
is the error class for socket.
TCPServer
represents a TCP/IP server socket.
A simple TCP server may look like:
require 'socket' server = TCPServer.new 2000 # Server bind to port 2000 loop do client = server.accept # Wait for a client to connect client.puts "Hello !" client.puts "Time is #{Time.now}" client.close end
A more usable server (serving multiple clients):
require 'socket' server = TCPServer.new 2000 loop do Thread.start(server.accept) do |client| client.puts "Hello !" client.puts "Time is #{Time.now}" client.close end end
TCPSocket
represents a TCP/IP client socket.
A simple client may look like:
require 'socket' s = TCPSocket.new 'localhost', 2000 while line = s.gets # Read lines from socket puts line # and print them end s.close # close socket when done
IO streams for strings, with access similar to IO
; see IO
.
Examples on this page assume that StringIO has been required:
require 'stringio'
StringScanner
provides for lexical scanning operations on a String
. Here is an example of its usage:
require 'strscan' s = StringScanner.new('This is an example string') s.eos? # -> false p s.scan(/\w+/) # -> "This" p s.scan(/\w+/) # -> nil p s.scan(/\s+/) # -> " " p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> "is" s.eos? # -> false p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "an" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "example" p s.scan(/\s+/) # -> " " p s.scan(/\w+/) # -> "string" s.eos? # -> true p s.scan(/\s+/) # -> nil p s.scan(/\w+/) # -> nil
Scanning a string means remembering the position of a scan pointer, which is just an index. The point of scanning is to move forward a bit at a time, so matches are sought after the scan pointer; usually immediately after it.
Given the string “test string”, here are the pertinent scan pointer positions:
t e s t s t r i n g 0 1 2 ... 1 0
When you scan
for a pattern (a regular expression), the match must occur at the character after the scan pointer. If you use scan_until
, then the match can occur anywhere after the scan pointer. In both cases, the scan pointer moves just beyond the last character of the match, ready to scan again from the next character onwards. This is demonstrated by the example above.
Method
Categories There are other methods besides the plain scanners. You can look ahead in the string without actually scanning. You can access the most recent match. You can modify the string being scanned, reset or terminate the scanner, find out or change the position of the scan pointer, skip ahead, and so on.
beginning_of_line?
(#bol?
)
Data
There are aliases to several of the methods.
Raised when OLE processing failed.
EX:
obj = WIN32OLE.new("NonExistProgID")
raises the exception:
WIN32OLERuntimeError: unknown OLE server: `NonExistProgID' HRESULT error code:0x800401f3 Invalid class string
Raised when an IO
operation fails.
File.open("/etc/hosts") {|f| f << "example"} #=> IOError: not opened for writing File.open("/etc/hosts") {|f| f.close; f.read } #=> IOError: closed stream
Note that some IO
failures raise SystemCallError
s and these are not subclasses of IOError:
File.open("does/not/exist") #=> Errno::ENOENT: No such file or directory - does/not/exist
Raised by some IO
operations when reaching the end of file. Many IO
methods exist in two forms,
one that returns nil
when the end of file is reached, the other raises EOFError
.
EOFError
is a subclass of IOError
.
file = File.open("/etc/hosts") file.read file.gets #=> nil file.readline #=> EOFError: end of file reached file.close
Class GetoptLong provides parsing both for options and for regular arguments.
Using GetoptLong, you can define options for your program. The program can then capture and respond to whatever options are included in the command that executes the program.
A simple example: file simple.rb
:
require 'getoptlong' options = GetoptLong.new( ['--number', '-n', GetoptLong::REQUIRED_ARGUMENT], ['--verbose', '-v', GetoptLong::OPTIONAL_ARGUMENT], ['--help', '-h', GetoptLong::NO_ARGUMENT] )
If you are somewhat familiar with options, you may want to skip to this full example.
A GetoptLong option has:
A string option name.
Zero or more string aliases for the name.
An option type.
Options may be defined by calling singleton method GetoptLong.new
, which returns a new GetoptLong object. Options may then be processed by calling other methods such as GetoptLong#each
.
In the array that defines an option, the first element is the string option name. Often the name takes the ‘long’ form, beginning with two hyphens.
The option name may have any number of aliases, which are defined by additional string elements.
The name and each alias must be of one of two forms:
Two hyphens, followed by one or more letters.
One hyphen, followed by a single letter.
File
aliases.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', '-x', '--aaa', '-a', '-p', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
An option may be cited by its name, or by any of its aliases; the parsed option always reports the name, not an alias:
$ ruby aliases.rb -a -p --xxx --aaa -x
Output:
["--xxx", ""] ["--xxx", ""] ["--xxx", ""] ["--xxx", ""] ["--xxx", ""]
An option may also be cited by an abbreviation of its name or any alias, as long as that abbreviation is unique among the options.
File
abbrev.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::NO_ARGUMENT], ['--xyz', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
Command line:
$ ruby abbrev.rb --xxx --xx --xyz --xy
Output:
["--xxx", ""] ["--xxx", ""] ["--xyz", ""] ["--xyz", ""]
This command line raises GetoptLong::AmbiguousOption
:
$ ruby abbrev.rb --x
An option may be cited more than once:
$ ruby abbrev.rb --xxx --xyz --xxx --xyz
Output:
["--xxx", ""] ["--xyz", ""] ["--xxx", ""] ["--xyz", ""]
A option-like token that appears anywhere after the token --
is treated as an ordinary argument, and is not processed as an option:
$ ruby abbrev.rb --xxx --xyz -- --xxx --xyz
Output:
["--xxx", ""] ["--xyz", ""]
Each option definition includes an option type, which controls whether the option takes an argument.
File
types.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
Note that an option type has to do with the option argument (whether it is required, optional, or forbidden), not with whether the option itself is required.
An option of type GetoptLong::REQUIRED_ARGUMENT
must be followed by an argument, which is associated with that option:
$ ruby types.rb --xxx foo
Output:
["--xxx", "foo"]
If the option is not last, its argument is whatever follows it (even if the argument looks like another option):
$ ruby types.rb --xxx --yyy
Output:
["--xxx", "--yyy"]
If the option is last, an exception is raised:
$ ruby types.rb # Raises GetoptLong::MissingArgument
An option of type GetoptLong::OPTIONAL_ARGUMENT
may be followed by an argument, which if given is associated with that option.
If the option is last, it does not have an argument:
$ ruby types.rb --yyy
Output:
["--yyy", ""]
If the option is followed by another option, it does not have an argument:
$ ruby types.rb --yyy --zzz
Output:
["--yyy", ""] ["--zzz", ""]
Otherwise the option is followed by its argument, which is associated with that option:
$ ruby types.rb --yyy foo
Output:
["--yyy", "foo"]
An option of type GetoptLong::NO_ARGUMENT
takes no argument:
ruby types.rb --zzz foo
Output:
["--zzz", ""]
You can process options either with method each
and a block, or with method get
.
During processing, each found option is removed, along with its argument if there is one. After processing, each remaining element was neither an option nor the argument for an option.
File
argv.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby argv.rb --xxx Foo --yyy Bar Baz --zzz Bat Bam
Output:
Original ARGV: ["--xxx", "Foo", "--yyy", "Bar", "Baz", "--zzz", "Bat", "Bam"] ["--xxx", "Foo"] ["--yyy", "Bar"] ["--zzz", ""] Remaining ARGV: ["Baz", "Bat", "Bam"]
There are three settings that control the way the options are interpreted:
PERMUTE
.
REQUIRE_ORDER
.
RETURN_IN_ORDER
.
The initial setting for a new GetoptLong object is REQUIRE_ORDER
if environment variable POSIXLY_CORRECT
is defined, PERMUTE
otherwise.
In the PERMUTE
ordering, options and other, non-option, arguments may appear in any order and any mixture.
File
permute.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby permute.rb Foo --zzz Bar --xxx Baz --yyy Bat Bam --xxx Bag Bah
Output:
Original ARGV: ["Foo", "--zzz", "Bar", "--xxx", "Baz", "--yyy", "Bat", "Bam", "--xxx", "Bag", "Bah"] ["--zzz", ""] ["--xxx", "Baz"] ["--yyy", "Bat"] ["--xxx", "Bag"] Remaining ARGV: ["Foo", "Bar", "Bam", "Bah"]
In the REQUIRE_ORDER
ordering, all options precede all non-options; that is, each word after the first non-option word is treated as a non-option word (even if it begins with a hyphen).
File
require_order.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.ordering = GetoptLong::REQUIRE_ORDER puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby require_order.rb --xxx Foo Bar --xxx Baz --yyy Bat -zzz
Output:
Original ARGV: ["--xxx", "Foo", "Bar", "--xxx", "Baz", "--yyy", "Bat", "-zzz"] ["--xxx", "Foo"] Remaining ARGV: ["Bar", "--xxx", "Baz", "--yyy", "Bat", "-zzz"]
In the RETURN_IN_ORDER
ordering, every word is treated as an option. A word that begins with a hyphen (or two) is treated in the usual way; a word word
that does not so begin is treated as an option whose name is an empty string, and whose value is word
.
File
return_in_order.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.ordering = GetoptLong::RETURN_IN_ORDER puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby return_in_order.rb Foo --xxx Bar Baz --zzz Bat Bam
Output:
Original ARGV: ["Foo", "--xxx", "Bar", "Baz", "--zzz", "Bat", "Bam"] ["", "Foo"] ["--xxx", "Bar"] ["", "Baz"] ["--zzz", ""] ["", "Bat"] ["", "Bam"] Remaining ARGV: []
File
fibonacci.rb
:
require 'getoptlong' options = GetoptLong.new( ['--number', '-n', GetoptLong::REQUIRED_ARGUMENT], ['--verbose', '-v', GetoptLong::OPTIONAL_ARGUMENT], ['--help', '-h', GetoptLong::NO_ARGUMENT] ) def help(status = 0) puts <<~HELP Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help. HELP exit(status) end def print_fibonacci (number) return 0 if number == 0 return 1 if number == 1 or number == 2 i = 0 j = 1 (2..number).each do k = i + j i = j j = k puts j if @verbose end puts j unless @verbose end options.each do |option, argument| case option when '--number' @number = argument.to_i when '--verbose' @verbose = if argument.empty? true elsif argument.match(/true/i) true elsif argument.match(/false/i) false else puts '--verbose argument must be true or false' help(255) end when '--help' help end end unless @number puts 'Option --number is required.' help(255) end print_fibonacci(@number)
Command line:
$ ruby fibonacci.rb
Output:
Option --number is required. Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help.
Command line:
$ ruby fibonacci.rb --number
Raises GetoptLong::MissingArgument
:
fibonacci.rb: option `--number' requires an argument
Command line:
$ ruby fibonacci.rb --number 6
Output:
8
Command line:
$ ruby fibonacci.rb --number 6 --verbose
Output:
1 2 3 5 8
Command line:
$ ruby fibonacci.rb --number 6 --verbose yes
Output:
--verbose argument must be true or false Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help.
This class implements a pretty printing algorithm. It finds line breaks and nice indentations for grouped structure.
By default, the class assumes that primitive elements are strings and each byte in the strings have single column in width. But it can be used for other situations by giving suitable arguments for some methods:
newline object and space generation block for PrettyPrint.new
optional width argument for PrettyPrint#text
There are several candidate uses:
text formatting using proportional fonts
multibyte characters which has columns different to number of bytes
non-string formatting
Box based formatting?
Other (better) model/algorithm?
Report any bugs at bugs.ruby-lang.org
Christian Lindig, Strictly Pretty, March 2000, lindig.github.io/papers/strictly-pretty-2000.pdf
Philip Wadler, A prettier printer, March 1998, homepages.inf.ed.ac.uk/wadler/topics/language-design.html#prettier
Tanaka Akira <akr@fsij.org>
Resolv
is a thread-aware DNS
resolver library written in Ruby. Resolv
can handle multiple DNS
requests concurrently without blocking the entire Ruby interpreter.
See also resolv-replace.rb to replace the libc resolver with Resolv
.
Resolv
can look up various DNS
resources using the DNS
module directly.
Examples:
p Resolv.getaddress "www.ruby-lang.org" p Resolv.getname "210.251.121.214" Resolv::DNS.open do |dns| ress = dns.getresources "www.ruby-lang.org", Resolv::DNS::Resource::IN::A p ress.map(&:address) ress = dns.getresources "ruby-lang.org", Resolv::DNS::Resource::IN::MX p ress.map { |r| [r.exchange.to_s, r.preference] } end
NIS is not supported.
/etc/nsswitch.conf is not supported.
Weak Reference class that allows a referenced object to be garbage-collected.
A WeakRef
may be used exactly like the object it references.
Usage:
foo = Object.new # create a new object instance p foo.to_s # original's class foo = WeakRef.new(foo) # reassign foo with WeakRef instance p foo.to_s # should be same class GC.start # start the garbage collector p foo.to_s # should raise exception (recycled)
Raised when attempting to divide an integer by 0.
42 / 0 #=> ZeroDivisionError: divided by 0
Note that only division by an exact 0 will raise the exception:
42 / 0.0 #=> Float::INFINITY 42 / -0.0 #=> -Float::INFINITY 0 / 0.0 #=> NaN
Raised when attempting to convert special float values (in particular Infinity
or NaN
) to numerical classes which don’t support them.
Float::INFINITY.to_r #=> FloatDomainError: Infinity
Raised when Ruby can’t yield as requested.
A typical scenario is attempting to yield when no block is given:
def call_block yield 42 end call_block
raises the exception:
LocalJumpError: no block given (yield)
A more subtle example:
def get_me_a_return Proc.new { return 42 } end get_me_a_return.call
raises the exception:
LocalJumpError: unexpected return