Sometimes you want to check an instance of a node against a list of classes to see what kind of behavior to perform. Usually this is done by calling ‘[cls1, cls2].include?(node.class)` or putting the node into a case statement and doing `case node; when cls1; when cls2; end`. Both of these approaches are relatively slow because of the constant lookups, method calls, and/or array allocations.
Instead, you can call type
, which will return to you a symbol that you can use for comparison. This is faster than the other approaches because it uses a single integer comparison, but also because if you’re on CRuby you can take advantage of the fact that case statements with all symbol keys will use a jump table.
def type: () -> Symbol
Similar to type
, this method returns a symbol that you can use for splitting on the type of the node without having to do a long === chain. Note that like type
, it will still be slower than using == for a single class, but should be faster in a case statement or an array comparison.
def self.type: () -> Symbol
def initialize: (name: Symbol
, name_loc
: Location
, value: Node
, operator_loc
: Location
, location: Location
) -> void
def accept: (visitor: Visitor
) -> void
def child_nodes
: () -> Array[nil | Node]
def operator: () -> String
Sometimes you want to check an instance of a node against a list of classes to see what kind of behavior to perform. Usually this is done by calling ‘[cls1, cls2].include?(node.class)` or putting the node into a case statement and doing `case node; when cls1; when cls2; end`. Both of these approaches are relatively slow because of the constant lookups, method calls, and/or array allocations.
Instead, you can call type
, which will return to you a symbol that you can use for comparison. This is faster than the other approaches because it uses a single integer comparison, but also because if you’re on CRuby you can take advantage of the fact that case statements with all symbol keys will use a jump table.
def type: () -> Symbol
Similar to type
, this method returns a symbol that you can use for splitting on the type of the node without having to do a long === chain. Note that like type
, it will still be slower than using == for a single class, but should be faster in a case statement or an array comparison.
def self.type: () -> Symbol
value: is mandatory.
tag: optional, may be specified for tagged values. If no tag is specified, the UNIVERSAL tag corresponding to the Primitive
sub-class is used by default.
tagging: may be used as an encoding hint to encode a value either explicitly or implicitly, see ASN1
for possible values.
tag_class: if tag and tagging are nil
then this is set to :UNIVERSAL
by default. If either tag or tagging are set then :CONTEXT_SPECIFIC
is used as the default. For possible values please cf. ASN1
.
int = OpenSSL::ASN1::Integer.new(42) zero_tagged_int = OpenSSL::ASN1::Integer.new(42, 0, :IMPLICIT) private_explicit_zero_tagged_int = OpenSSL::ASN1::Integer.new(42, 0, :EXPLICIT, :PRIVATE)
See ASN1Data#to_der
for details.
Calls the given block once for each element in self, passing that element as parameter asn1. If no block is given, an enumerator is returned instead.
asn1_ary.each do |asn1| puts asn1 end