Results for: "minmax"

No documentation available
No documentation available
No documentation available
No documentation available

module IN contains ARPA Internet specific RRs.

No documentation available
No documentation available

Common implementation for SVCB-compatible resource records.

No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

This is similar to PrettyPrint::format but the result has no breaks.

maxwidth, newline and genspace are ignored.

The invocation of breakable in the block doesn’t break a line and is treated as just an invocation of text.

Closes the incoming port and returns whether it was already closed. All further attempts to Ractor.receive in the ractor, and send to the ractor will fail with Ractor::ClosedError.

r = Ractor.new {sleep(500)}
r.close_incoming  #=> false
r.close_incoming  #=> true
r.send('test')
# Ractor::ClosedError (The incoming-port is already closed)

Create a new InterpolatedMatchLastLineNode node

Returns one of the following:

When no block is given, each element in self must respond to method <=> with an Integer.

With no argument and no block, returns the element in self having the maximum value per method <=>:

[0, 1, 2].max # => 2

With an argument Integer n and no block, returns a new Array with at most n elements, in descending order per method <=>:

[0, 1, 2, 3].max(3) # => [3, 2, 1]
[0, 1, 2, 3].max(6) # => [3, 2, 1, 0]

When a block is given, the block must return an Integer.

With a block and no argument, calls the block self.size-1 times to compare elements; returns the element having the maximum value per the block:

['0', '00', '000'].max {|a, b| a.size <=> b.size } # => "000"

With an argument n and a block, returns a new Array with at most n elements, in descending order per the block:

['0', '00', '000'].max(2) {|a, b| a.size <=> b.size } # => ["000", "00"]

Returns one of the following:

When no block is given, each element in self must respond to method <=> with an Integer.

With no argument and no block, returns the element in self having the minimum value per method <=>:

[0, 1, 2].min # => 0

With Integer argument n and no block, returns a new Array with at most n elements, in ascending order per method <=>:

[0, 1, 2, 3].min(3) # => [0, 1, 2]
[0, 1, 2, 3].min(6) # => [0, 1, 2, 3]

When a block is given, the block must return an Integer.

With a block and no argument, calls the block self.size-1 times to compare elements; returns the element having the minimum value per the block:

['0', '00', '000'].min { |a, b| a.size <=> b.size } # => "0"

With an argument n and a block, returns a new Array with at most n elements, in ascending order per the block:

['0', '00', '000'].min(2) {|a, b| a.size <=> b.size } # => ["0", "00"]

Returns the remainder after dividing self by other.

Examples:

11.remainder(4)              # => 3
11.remainder(-4)             # => 3
-11.remainder(4)             # => -3
-11.remainder(-4)            # => -3

12.remainder(4)              # => 0
12.remainder(-4)             # => 0
-12.remainder(4)             # => 0
-12.remainder(-4)            # => 0

13.remainder(4.0)            # => 1.0
13.remainder(Rational(4, 1)) # => (1/1)

Returns 1.

Returns the imaginary value for self:

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.

Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:

Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6

Note that n.denominator of a non-rational numeric is 1.

Related: Complex#numerator.

Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:

Complex(Float::INFINITY, 0).infinite? # => 1
Complex(1, 1).infinite?               # => nil

Related: Numeric#infinite?, Float#infinite?.

Returns the remainder after dividing self by other.

Of the Core and Standard Library classes, only Float and Rational use this implementation.

Examples:

11.0.remainder(4)              # => 3.0
11.0.remainder(-4)             # => 3.0
-11.0.remainder(4)             # => -3.0
-11.0.remainder(-4)            # => -3.0

12.0.remainder(4)              # => 0.0
12.0.remainder(-4)             # => 0.0
-12.0.remainder(4)             # => -0.0
-12.0.remainder(-4)            # => -0.0

13.0.remainder(4.0)            # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0

Rational(13, 1).remainder(4)   # => (1/1)
Rational(13, 1).remainder(-4)  # => (1/1)
Rational(-13, 1).remainder(4)  # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)

Returns nil, -1, or 1 depending on whether self is finite, -Infinity, or +Infinity.

Search took: 3ms  ·  Total Results: 2220