Returns the value as an Integer
.
If the BigDecimal
is infinity or NaN, raises FloatDomainError
.
Returns true
if the arguments define a valid ordinal date, false
otherwise:
Date.valid_ordinal?(2001, 34) # => true Date.valid_ordinal?(2001, 366) # => false
See argument start.
Related: Date.jd
, Date.ordinal
.
Returns true
if the given year is a leap year in the proleptic Gregorian calendar, false
otherwise:
Date.gregorian_leap?(2000) # => true Date.gregorian_leap?(2001) # => false
Related: Date.julian_leap?
.
Returns a copy of self
with the given start
value:
d0 = Date.new(2000, 2, 3) d0.julian? # => false d1 = d0.new_start(Date::JULIAN) d1.julian? # => true
See argument start.
Waits until IO
is writable and returns a truthy value or a falsy value when times out.
You must require ‘io/wait’ to use this method.
Attempts to convert object
into an IO object via method to_io
; returns the new IO object if successful, or nil
otherwise:
IO.try_convert(STDOUT) # => #<IO:<STDOUT>> IO.try_convert(ARGF) # => #<IO:<STDIN>> IO.try_convert('STDOUT') # => nil
Calls the block with each remaining line read from the stream; returns self
. Does nothing if already at end-of-stream; See Line IO.
With no arguments given, reads lines as determined by line separator $/
:
f = File.new('t.txt') f.each_line {|line| p line } f.each_line {|line| fail 'Cannot happen' } f.close
Output:
"First line\n" "Second line\n" "\n" "Fourth line\n" "Fifth line\n"
With only string argument sep
given, reads lines as determined by line separator sep
; see Line Separator:
f = File.new('t.txt') f.each_line('li') {|line| p line } f.close
Output:
"First li" "ne\nSecond li" "ne\n\nFourth li" "ne\nFifth li" "ne\n"
The two special values for sep
are honored:
f = File.new('t.txt') # Get all into one string. f.each_line(nil) {|line| p line } f.close
Output:
"First line\nSecond line\n\nFourth line\nFifth line\n" f.rewind # Get paragraphs (up to two line separators). f.each_line('') {|line| p line }
Output:
"First line\nSecond line\n\n" "Fourth line\nFifth line\n"
With only integer argument limit
given, limits the number of bytes in each line; see Line Limit:
f = File.new('t.txt') f.each_line(8) {|line| p line } f.close
Output:
"First li" "ne\n" "Second l" "ine\n" "\n" "Fourth l" "ine\n" "Fifth li" "ne\n"
With arguments sep
and limit
given, combines the two behaviors:
Calls with the next line as determined by line separator sep
.
But returns no more bytes than are allowed by the limit.
Optional keyword argument chomp
specifies whether line separators are to be omitted:
f = File.new('t.txt') f.each_line(chomp: true) {|line| p line } f.close
Output:
"First line" "Second line" "" "Fourth line" "Fifth line"
Returns an Enumerator
if no block is given.
Calls the given block with each codepoint in the stream; returns self
:
f = File.new('t.rus') a = [] f.each_codepoint {|c| a << c } a # => [1090, 1077, 1089, 1090] f.close
Returns an Enumerator
if no block is given.
Related: IO#each_byte
, IO#each_char
.
Closes the stream for writing if open for writing; returns nil
. See Open and Closed Streams.
Flushes any buffered writes to the operating system before closing.
If the stream was opened by IO.popen
and is also closed for reading, sets global variable $?
(child exit status).
IO.popen('ruby', 'r+') do |pipe| puts pipe.closed? pipe.close_read puts pipe.closed? pipe.close_write puts $? puts pipe.closed? end
Output:
false false pid 15044 exit 0 true
Related: IO#close
, IO#close_read
, IO#closed?
.
Writes the given string to ios using the write(2) system call after O_NONBLOCK is set for the underlying file descriptor.
It returns the number of bytes written.
write_nonblock
just calls the write(2) system call. It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The result may also be smaller than string.length (partial write). The caller should care such errors and partial write.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying write_nonblock.
# Creates a pipe. r, w = IO.pipe # write_nonblock writes only 65536 bytes and return 65536. # (The pipe size is 65536 bytes on this environment.) s = "a" * 100000 p w.write_nonblock(s) #=> 65536 # write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN). p w.write_nonblock("b") # Resource temporarily unavailable (Errno::EAGAIN)
If the write buffer is not empty, it is flushed at first.
When write_nonblock
raises an exception kind of IO::WaitWritable
, write_nonblock
should not be called until io is writable for avoiding busy loop. This can be done as follows.
begin result = io.write_nonblock(string) rescue IO::WaitWritable, Errno::EINTR IO.select(nil, [io]) retry end
Note that this doesn’t guarantee to write all data in string. The length written is reported as result and it should be checked later.
On some platforms such as Windows, write_nonblock
is not supported according to the kind of the IO
object. In such cases, write_nonblock
raises Errno::EBADF
.
By specifying a keyword argument exception to false
, you can indicate that write_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
With no argument, returns the value of $!
, which is the result of the most recent pattern match (see Regexp global variables):
/c(.)t/ =~ 'cat' # => 0 Regexp.last_match # => #<MatchData "cat" 1:"a"> /a/ =~ 'foo' # => nil Regexp.last_match # => nil
With non-negative integer argument n
, returns the _n_th field in the matchdata, if any, or nil if none:
/c(.)t/ =~ 'cat' # => 0 Regexp.last_match(0) # => "cat" Regexp.last_match(1) # => "a" Regexp.last_match(2) # => nil
With negative integer argument n
, counts backwards from the last field:
Regexp.last_match(-1) # => "a"
With string or symbol argument name
, returns the string value for the named capture, if any:
/(?<lhs>\w+)\s*=\s*(?<rhs>\w+)/ =~ 'var = val' Regexp.last_match # => #<MatchData "var = val" lhs:"var"rhs:"val"> Regexp.last_match(:lhs) # => "var" Regexp.last_match('rhs') # => "val" Regexp.last_match('foo') # Raises IndexError.
Returns object
if it is a regexp:
Regexp.try_convert(/re/) # => /re/
Otherwise if object
responds to :to_regexp
, calls object.to_regexp
and returns the result.
Returns nil
if object
does not respond to :to_regexp
.
Regexp.try_convert('re') # => nil
Raises an exception unless object.to_regexp
returns a regexp.
Returns true
if matching against re
can be done in linear time to the input string.
Regexp.linear_time?(/re/) # => true
Note that this is a property of the ruby interpreter, not of the argument regular expression. Identical regexp can or cannot run in linear time depending on your ruby binary. Neither forward nor backward compatibility is guaranteed about the return value of this method. Our current algorithm is (*1) but this is subject to change in the future. Alternative implementations can also behave differently. They might always return false for everything.
Dup internal hash.
Clone internal hash.
Returns true
if the class was initialized with keyword_init: true
. Otherwise returns nil
or false
.
Examples:
Foo = Struct.new(:a) Foo.keyword_init? # => nil Bar = Struct.new(:a, keyword_init: true) Bar.keyword_init? # => true Baz = Struct.new(:a, keyword_init: false) Baz.keyword_init? # => false
Equivalent to self.to_s.start_with?
; see String#start_with?
.
Iterates over each line in the file and yields a String
object for each.