Results for: "String# "

IO streams for strings, with access similar to IO; see IO.

About the Examples

Examples on this page assume that StringIO has been required:

require 'stringio'

StringScanner provides for lexical scanning operations on a String. Here is an example of its usage:

require 'strscan'

s = StringScanner.new('This is an example string')
s.eos?               # -> false

p s.scan(/\w+/)      # -> "This"
p s.scan(/\w+/)      # -> nil
p s.scan(/\s+/)      # -> " "
p s.scan(/\s+/)      # -> nil
p s.scan(/\w+/)      # -> "is"
s.eos?               # -> false

p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "an"
p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "example"
p s.scan(/\s+/)      # -> " "
p s.scan(/\w+/)      # -> "string"
s.eos?               # -> true

p s.scan(/\s+/)      # -> nil
p s.scan(/\w+/)      # -> nil

Scanning a string means remembering the position of a scan pointer, which is just an index. The point of scanning is to move forward a bit at a time, so matches are sought after the scan pointer; usually immediately after it.

Given the string “test string”, here are the pertinent scan pointer positions:

  t e s t   s t r i n g
0 1 2 ...             1
                      0

When you scan for a pattern (a regular expression), the match must occur at the character after the scan pointer. If you use scan_until, then the match can occur anywhere after the scan pointer. In both cases, the scan pointer moves just beyond the last character of the match, ready to scan again from the next character onwards. This is demonstrated by the example above.

Method Categories

There are other methods besides the plain scanners. You can look ahead in the string without actually scanning. You can access the most recent match. You can modify the string being scanned, reset or terminate the scanner, find out or change the position of the scan pointer, skip ahead, and so on.

Advancing the Scan Pointer

Looking Ahead

Finding Where we Are

Setting Where we Are

Match Data

Miscellaneous

There are aliases to several of the methods.

Objects of class Binding encapsulate the execution context at some particular place in the code and retain this context for future use. The variables, methods, value of self, and possibly an iterator block that can be accessed in this context are all retained. Binding objects can be created using Kernel#binding, and are made available to the callback of Kernel#set_trace_func and instances of TracePoint.

These binding objects can be passed as the second argument of the Kernel#eval method, establishing an environment for the evaluation.

class Demo
  def initialize(n)
    @secret = n
  end
  def get_binding
    binding
  end
end

k1 = Demo.new(99)
b1 = k1.get_binding
k2 = Demo.new(-3)
b2 = k2.get_binding

eval("@secret", b1)   #=> 99
eval("@secret", b2)   #=> -3
eval("@secret")       #=> nil

Binding objects have no class-specific methods.

Returns the octet string representation of the elliptic curve point.

conversion_form specifies how the point is converted. Possible values are:

An Encoding instance represents a character encoding usable in Ruby. It is defined as a constant under the Encoding namespace. It has a name and, optionally, aliases:

Encoding::US_ASCII.name  # => "US-ASCII"
Encoding::US_ASCII.names # => ["US-ASCII", "ASCII", "ANSI_X3.4-1968", "646"]

A Ruby method that accepts an encoding as an argument will accept:

These are equivalent:

'foo'.encode(Encoding::US_ASCII) # Encoding object.
'foo'.encode('US-ASCII')         # Encoding name.
'foo'.encode('ASCII')            # Encoding alias.

For a full discussion of encodings and their uses, see the Encodings document.

Encoding::ASCII_8BIT is a special-purpose encoding that is usually used for a string of bytes, not a string of characters. But as the name indicates, its characters in the ASCII range are considered as ASCII characters. This is useful when you use other ASCII-compatible encodings.

EncodingError is the base class for encoding errors.

No documentation available
No documentation available

An OpenStruct is a data structure, similar to a Hash, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.

Examples

require "ostruct"

person = OpenStruct.new
person.name = "John Smith"
person.age  = 70

person.name      # => "John Smith"
person.age       # => 70
person.address   # => nil

An OpenStruct employs a Hash internally to store the attributes and values and can even be initialized with one:

australia = OpenStruct.new(:country => "Australia", :capital => "Canberra")
  # => #<OpenStruct country="Australia", capital="Canberra">

Hash keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*) will not be immediately available on the OpenStruct object as a method for retrieval or assignment, but can still be reached through the Object#send method or using [].

measurements = OpenStruct.new("length (in inches)" => 24)
measurements[:"length (in inches)"]       # => 24
measurements.send("length (in inches)")   # => 24

message = OpenStruct.new(:queued? => true)
message.queued?                           # => true
message.send("queued?=", false)
message.queued?                           # => false

Removing the presence of an attribute requires the execution of the delete_field method as setting the property value to nil will not remove the attribute.

first_pet  = OpenStruct.new(:name => "Rowdy", :owner => "John Smith")
second_pet = OpenStruct.new(:name => "Rowdy")

first_pet.owner = nil
first_pet                 # => #<OpenStruct name="Rowdy", owner=nil>
first_pet == second_pet   # => false

first_pet.delete_field(:owner)
first_pet                 # => #<OpenStruct name="Rowdy">
first_pet == second_pet   # => true

Ractor compatibility: A frozen OpenStruct with shareable values is itself shareable.

Caveats

An OpenStruct utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.

This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash or a Struct. Creating an open struct from a small Hash and accessing a few of the entries can be 200 times slower than accessing the hash directly.

This is a potential security issue; building OpenStruct from untrusted user data (e.g. JSON web request) may be susceptible to a “symbol denial of service” attack since the keys create methods and names of methods are never garbage collected.

This may also be the source of incompatibilities between Ruby versions:

o = OpenStruct.new
o.then # => nil in Ruby < 2.6, enumerator for Ruby >= 2.6

Builtin methods may be overwritten this way, which may be a source of bugs or security issues:

o = OpenStruct.new
o.methods # => [:to_h, :marshal_load, :marshal_dump, :each_pair, ...
o.methods = [:foo, :bar]
o.methods # => [:foo, :bar]

To help remedy clashes, OpenStruct uses only protected/private methods ending with ! and defines aliases for builtin public methods by adding a !:

o = OpenStruct.new(make: 'Bentley', class: :luxury)
o.class # => :luxury
o.class! # => OpenStruct

It is recommended (but not enforced) to not use fields ending in !; Note that a subclass’ methods may not be overwritten, nor can OpenStruct’s own methods ending with !.

For all these reasons, consider not using OpenStruct at all.

Class Struct provides a convenient way to create a simple class that can store and fetch values.

This example creates a subclass of Struct, Struct::Customer; the first argument, a string, is the name of the subclass; the other arguments, symbols, determine the members of the new subclass.

Customer = Struct.new('Customer', :name, :address, :zip)
Customer.name       # => "Struct::Customer"
Customer.class      # => Class
Customer.superclass # => Struct

Corresponding to each member are two methods, a writer and a reader, that store and fetch values:

methods = Customer.instance_methods false
methods # => [:zip, :address=, :zip=, :address, :name, :name=]

An instance of the subclass may be created, and its members assigned values, via method ::new:

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe # => #<struct Struct::Customer name="Joe Smith", address="123 Maple, Anytown NC", zip=12345>

The member values may be managed thus:

joe.name    # => "Joe Smith"
joe.name = 'Joseph Smith'
joe.name    # => "Joseph Smith"

And thus; note that member name may be expressed as either a string or a symbol:

joe[:name]  # => "Joseph Smith"
joe[:name] = 'Joseph Smith, Jr.'
joe['name'] # => "Joseph Smith, Jr."

See Struct::new.

What’s Here

First, what’s elsewhere. Class Struct:

See also Data, which is a somewhat similar, but stricter concept for defining immutable value objects.

Here, class Struct provides methods that are useful for:

Methods for Creating a Struct Subclass

Methods for Querying

Methods for Comparing

Methods for Fetching

Methods for Assigning

Methods for Iterating

Methods for Converting

No documentation available
No documentation available

This class implements a pretty printing algorithm. It finds line breaks and nice indentations for grouped structure.

By default, the class assumes that primitive elements are strings and each byte in the strings have single column in width. But it can be used for other situations by giving suitable arguments for some methods:

There are several candidate uses:

Bugs

Report any bugs at bugs.ruby-lang.org

References

Christian Lindig, Strictly Pretty, March 2000, www.st.cs.uni-sb.de/~lindig/papers/#pretty

Philip Wadler, A prettier printer, March 1998, homepages.inf.ed.ac.uk/wadler/topics/language-design.html#prettier

Author

Tanaka Akira <akr@fsij.org>

Raised in case of a stack overflow.

def me_myself_and_i
  me_myself_and_i
end
me_myself_and_i

raises the exception:

SystemStackError: stack level too deep

Document-class: TracePoint

A class that provides the functionality of Kernel#set_trace_func in a nice Object-Oriented API.

Example

We can use TracePoint to gather information specifically for exceptions:

trace = TracePoint.new(:raise) do |tp|
    p [tp.lineno, tp.event, tp.raised_exception]
end
#=> #<TracePoint:disabled>

trace.enable
#=> false

0 / 0
#=> [5, :raise, #<ZeroDivisionError: divided by 0>]

Events

If you don’t specify the type of events you want to listen for, TracePoint will include all available events.

Note do not depend on current event set, as this list is subject to change. Instead, it is recommended you specify the type of events you want to use.

To filter what is traced, you can pass any of the following as events:

:line

execute an expression or statement on a new line

:class

start a class or module definition

:end

finish a class or module definition

:call

call a Ruby method

:return

return from a Ruby method

:c_call

call a C-language routine

:c_return

return from a C-language routine

:raise

raise an exception

:b_call

event hook at block entry

:b_return

event hook at block ending

:a_call

event hook at all calls (call, b_call, and c_call)

:a_return

event hook at all returns (return, b_return, and c_return)

:thread_begin

event hook at thread beginning

:thread_end

event hook at thread ending

:fiber_switch

event hook at fiber switch

:script_compiled

new Ruby code compiled (with eval, load or require)

The Warning module contains a single method named warn, and the module extends itself, making Warning.warn available. Warning.warn is called for all warnings issued by Ruby. By default, warnings are printed to $stderr.

Changing the behavior of Warning.warn is useful to customize how warnings are handled by Ruby, for instance by filtering some warnings, and/or outputting warnings somewhere other than $stderr.

If you want to change the behavior of Warning.warn you should use +Warning.extend(MyNewModuleWithWarnMethod)+ and you can use ‘super` to get the default behavior of printing the warning to $stderr.

Example:

module MyWarningFilter
  def warn(message, category: nil, **kwargs)
    if /some warning I want to ignore/.match?(message)
      # ignore
    else
      super
    end
  end
end
Warning.extend MyWarningFilter

You should never redefine Warning#warn (the instance method), as that will then no longer provide a way to use the default behavior.

The warning gem provides convenient ways to customize Warning.warn.

SingleForwardable can be used to setup delegation at the object level as well.

printer = String.new
printer.extend SingleForwardable        # prepare object for delegation
printer.def_delegator "STDOUT", "puts"  # add delegation for STDOUT.puts()
printer.puts "Howdy!"

Also, SingleForwardable can be used to set up delegation for a Class or Module.

class Implementation
  def self.service
    puts "serviced!"
  end
end

module Facade
  extend SingleForwardable
  def_delegator :Implementation, :service
end

Facade.service #=> serviced!

If you want to use both Forwardable and SingleForwardable, you can use methods def_instance_delegator and def_single_delegator, etc.

A module to implement the Linda distributed computing paradigm in Ruby.

Rinda is part of DRb (dRuby).

Example(s)

See the sample/drb/ directory in the Ruby distribution, from 1.8.2 onwards.

The Singleton module implements the Singleton pattern.

Usage

To use Singleton, include the module in your class.

class Klass
   include Singleton
   # ...
end

This ensures that only one instance of Klass can be created.

a,b = Klass.instance, Klass.instance

a == b
# => true

Klass.new
# => NoMethodError - new is private ...

The instance is created at upon the first call of Klass.instance().

class OtherKlass
  include Singleton
  # ...
end

ObjectSpace.each_object(OtherKlass){}
# => 0

OtherKlass.instance
ObjectSpace.each_object(OtherKlass){}
# => 1

This behavior is preserved under inheritance and cloning.

Implementation

This above is achieved by:

Singleton and Marshal

By default Singleton’s _dump(depth) returns the empty string. Marshalling by default will strip state information, e.g. instance variables from the instance. Classes using Singleton can provide custom _load(str) and _dump(depth) methods to retain some of the previous state of the instance.

require 'singleton'

class Example
  include Singleton
  attr_accessor :keep, :strip
  def _dump(depth)
    # this strips the @strip information from the instance
    Marshal.dump(@keep, depth)
  end

  def self._load(str)
    instance.keep = Marshal.load(str)
    instance
  end
end

a = Example.instance
a.keep = "keep this"
a.strip = "get rid of this"

stored_state = Marshal.dump(a)

a.keep = nil
a.strip = nil
b = Marshal.load(stored_state)
p a == b  #  => true
p a.keep  #  => "keep this"
p a.strip #  => nil

A custom InputMethod class used by XMP for evaluating string io.

Mini String IO [Private]

Acts like a StringIO with reduced API, but without having to require that class.

RingFinger is used by RingServer clients to discover the RingServer’s TupleSpace. Typically, all a client needs to do is call RingFinger.primary to retrieve the remote TupleSpace, which it can then begin using.

To find the first available remote TupleSpace:

Rinda::RingFinger.primary

To create a RingFinger that broadcasts to a custom list:

rf = Rinda::RingFinger.new  ['localhost', '192.0.2.1']
rf.primary

Rinda::RingFinger also understands multicast addresses and sets them up properly. This allows you to run multiple RingServers on the same host:

rf = Rinda::RingFinger.new ['239.0.0.1']
rf.primary

You can set the hop count (or TTL) for multicast searches using multicast_hops.

If you use IPv6 multicast you may need to set both an address and the outbound interface index:

rf = Rinda::RingFinger.new ['ff02::1']
rf.multicast_interface = 1
rf.primary

At this time there is no easy way to get an interface index by name.

No documentation available

Helper methods for both Gem::Installer and Gem::Uninstaller

This exception is raised if the nesting of parsed data structures is too deep.

Search took: 7ms  ·  Total Results: 2725