Results for: "Array.new"

Gets a list of characters which can be used to quote a substring of the line.

Raises NotImplementedError if the using readline library does not support.

Sets a list of characters that cause a filename to be quoted by the completer when they appear in a completed filename. The default is nil.

Raises NotImplementedError if the using readline library does not support.

Gets a list of characters that cause a filename to be quoted by the completer when they appear in a completed filename.

Raises NotImplementedError if the using readline library does not support.

No documentation available

Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
p graph.strongly_connected_components #=> [[4], [2], [3], [1]]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
p graph.strongly_connected_components #=> [[4], [2, 3], [1]]

Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.

The graph is represented by each_node and each_child. each_node should have call method which yields for each node in the graph. each_child should have call method which takes a node argument and yields for each child node.

g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
each_node = lambda {|&b| g.each_key(&b) }
each_child = lambda {|n, &b| g[n].each(&b) }
p TSort.strongly_connected_components(each_node, each_child)
#=> [[4], [2], [3], [1]]

g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
each_node = lambda {|&b| g.each_key(&b) }
each_child = lambda {|n, &b| g[n].each(&b) }
p TSort.strongly_connected_components(each_node, each_child)
#=> [[4], [2, 3], [1]]

Generates a cryptographically strong pseudo-random number in the range 0…range.

See also the man page BN_rand_range(3).

Generates a random prime number of bit length bits. If safe is set to true, generates a safe prime. If add is specified, generates a prime that fulfills condition p % add = rem.

Parameters

No documentation available

Returns the size of arguments of the method.

tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook')
method = WIN32OLE_METHOD.new(tobj, 'SaveAs')
puts method.size_params # => 11

Returns library name. If the method fails to access library name, WIN32OLERuntimeError is raised.

tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library')
tlib.library_name # => Excel
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
Search took: 5ms  ·  Total Results: 2278