Results for: "minmax"

Equivalent to $stdout.print(*objects), this method is the straightforward way to write to $stdout.

Writes the given objects to $stdout; returns nil. Appends the output record separator $OUTPUT_RECORD_SEPARATOR $\), if it is not nil.

With argument objects given, for each object:

With default separators:

objects = [0, 0.0, Rational(0, 1), Complex(0, 0), :zero, 'zero']
$OUTPUT_RECORD_SEPARATOR
$OUTPUT_FIELD_SEPARATOR
print(*objects)

Output:

nil
nil
00.00/10+0izerozero

With specified separators:

$OUTPUT_RECORD_SEPARATOR = "\n"
$OUTPUT_FIELD_SEPARATOR = ','
print(*objects)

Output:

0,0.0,0/1,0+0i,zero,zero

With no argument given, writes the content of $_ (which is usually the most recent user input):

gets  # Sets $_ to the most recent user input.
print # Prints $_.

Equivalent to method Kernel#gets, except that it raises an exception if called at end-of-stream:

$ cat t.txt | ruby -e "p readlines; readline"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]
in `readline': end of file reached (EOFError)

Optional keyword argument chomp specifies whether line separators are to be omitted.

Returns an array containing the lines returned by calling Kernel#gets until the end-of-stream is reached; (see Line IO).

With only string argument sep given, returns the remaining lines as determined by line separator sep, or nil if none; see Line Separator:

# Default separator.
$ cat t.txt | ruby -e "p readlines"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]

# Specified separator.
$ cat t.txt | ruby -e "p readlines 'li'"
["First li", "ne\nSecond li", "ne\n\nFourth li", "ne\nFifth li", "ne\n"]

# Get-all separator.
$ cat t.txt | ruby -e "p readlines nil"
["First line\nSecond line\n\nFourth line\nFifth line\n"]

# Get-paragraph separator.
$ cat t.txt | ruby -e "p readlines ''"
["First line\nSecond line\n\n", "Fourth line\nFifth line\n"]

With only integer argument limit given, limits the number of bytes in the line; see Line Limit:

$cat t.txt | ruby -e "p readlines 10"
["First line", "\n", "Second lin", "e\n", "\n", "Fourth lin", "e\n", "Fifth line", "\n"]

$cat t.txt | ruby -e "p readlines 11"
["First line\n", "Second line", "\n", "\n", "Fourth line", "\n", "Fifth line\n"]

$cat t.txt | ruby -e "p readlines 12"
["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"]

With arguments sep and limit given, combines the two behaviors; see Line Separator and Line Limit.

Optional keyword argument chomp specifies whether line separators are to be omitted:

$ cat t.txt | ruby -e "p readlines(chomp: true)"
["First line", "Second line", "", "Fourth line", "Fifth line"]

Optional keyword arguments enc_opts specify encoding options; see Encoding options.

Returns the string resulting from formatting objects into format_string.

For details on format_string, see Format Specifications.

Kernel#format is an alias for Kernel#sprintf.

Returns the string resulting from formatting objects into format_string.

For details on format_string, see Format Specifications.

Kernel#format is an alias for Kernel#sprintf.

Returns an integer converted from object.

Tries to convert object to an integer using to_int first and to_i second; see below for exceptions.

With a non-zero base, object must be a string or convertible to a string.

numeric objects

With integer argument object given, returns object:

Integer(1)                # => 1
Integer(-1)               # => -1

With floating-point argument object given, returns object truncated to an intger:

Integer(1.9)              # => 1  # Rounds toward zero.
Integer(-1.9)             # => -1 # Rounds toward zero.

string objects

With string argument object and zero base given, returns object converted to an integer in base 10:

Integer('100')    # => 100
Integer('-100')   # => -100

With base zero, string object may contain leading characters to specify the actual base (radix indicator):

Integer('0100')  # => 64  # Leading '0' specifies base 8.
Integer('0b100') # => 4   # Leading '0b', specifies base 2.
Integer('0x100') # => 256 # Leading '0x' specifies base 16.

With a positive base (in range 2..36) given, returns object converted to an integer in the given base:

Integer('100', 2)   # => 4
Integer('100', 8)   # => 64
Integer('-100', 16) # => -256

With a negative base (in range -36..-2) given, returns object converted to an integer in the radix indicator if exists or -base:

Integer('0x100', -2)   # => 256
Integer('100', -2)     # => 4
Integer('0b100', -8)   # => 4
Integer('100', -8)     # => 64
Integer('0o100', -10)  # => 64
Integer('100', -10)    # => 100

base -1 is equal the -10 case.

When converting strings, surrounding whitespace and embedded underscores are allowed and ignored:

Integer(' 100 ')      # => 100
Integer('-1_0_0', 16) # => -256

other classes

Examples with object of various other classes:

Integer(Rational(9, 10)) # => 0  # Rounds toward zero.
Integer(Complex(2, 0))   # => 2  # Imaginary part must be zero.
Integer(Time.now)        # => 1650974042

keywords

With optional keyword argument exception given as true (the default):

With exception given as false, an exception of any kind is suppressed and nil is returned.

Returns a string converted from object.

Tries to convert object to a string using to_str first and to_s second:

String([0, 1, 2])        # => "[0, 1, 2]"
String(0..5)             # => "0..5"
String({foo: 0, bar: 1}) # => "{:foo=>0, :bar=>1}"

Raises TypeError if object cannot be converted to a string.

Returns the first element for which the block returns a truthy value.

With a block given, calls the block with successive elements of the collection; returns the first element for which the block returns a truthy value:

(0..9).find {|element| element > 2}                # => 3

If no such element is found, calls if_none_proc and returns its return value.

(0..9).find(proc {false}) {|element| element > 12} # => false
{foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') }            # => [:bar, 1]
{foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []

With no block given, returns an Enumerator.

Returns an array of objects returned by the block.

With a block given, calls the block with successive elements; returns an array of the objects returned by the block:

(0..4).map {|i| i*i }                               # => [0, 1, 4, 9, 16]
{foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]

With no block given, returns an Enumerator.

Returns an object formed from operands via either:

With method-name argument symbol, combines operands using the method:

# Sum, without initial_operand.
(1..4).inject(:+)     # => 10
# Sum, with initial_operand.
(1..4).inject(10, :+) # => 20

With a block, passes each operand to the block:

# Sum of squares, without initial_operand.
(1..4).inject {|sum, n| sum + n*n }    # => 30
# Sum of squares, with initial_operand.
(1..4).inject(2) {|sum, n| sum + n*n } # => 32

Operands

If argument initial_operand is not given, the operands for inject are simply the elements of self. Example calls and their operands:

Examples with first operand (which is self.first) of various types:

# Integer.
(1..4).inject(:+)                # => 10
# Float.
[1.0, 2, 3, 4].inject(:+)        # => 10.0
# Character.
('a'..'d').inject(:+)            # => "abcd"
# Complex.
[Complex(1, 2), 3, 4].inject(:+) # => (8+2i)

If argument initial_operand is given, the operands for inject are that value plus the elements of self. Example calls their operands:

Examples with initial_operand of various types:

# Integer.
(1..4).inject(2, :+)               # => 12
# Float.
(1..4).inject(2.0, :+)             # => 12.0
# String.
('a'..'d').inject('foo', :+)       # => "fooabcd"
# Array.
%w[a b c].inject(['x'], :push)     # => ["x", "a", "b", "c"]
# Complex.
(1..4).inject(Complex(2, 2), :+)   # => (12+2i)

Combination by Given Method

If the method-name argument symbol is given, the operands are combined by that method:

The return value from inject is the result of the last combination.

This call to inject computes the sum of the operands:

(1..4).inject(:+) # => 10

Examples with various methods:

# Integer addition.
(1..4).inject(:+)                # => 10
# Integer multiplication.
(1..4).inject(:*)                # => 24
# Character range concatenation.
('a'..'d').inject('', :+)        # => "abcd"
# String array concatenation.
%w[foo bar baz].inject('', :+)   # => "foobarbaz"
# Hash update.
h = [{foo: 0, bar: 1}, {baz: 2}, {bat: 3}].inject(:update)
h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3}
# Hash conversion to nested arrays.
h = {foo: 0, bar: 1}.inject([], :push)
h # => [[:foo, 0], [:bar, 1]]

Combination by Given Block

If a block is given, the operands are passed to the block:

The return value from inject is the return value from the last block call.

This call to inject gives a block that writes the memo and element, and also sums the elements:

(1..4).inject do |memo, element|
  p "Memo: #{memo}; element: #{element}"
  memo + element
end # => 10

Output:

"Memo: 1; element: 2"
"Memo: 3; element: 3"
"Memo: 6; element: 4"

Enumerable#reduce is an alias for Enumerable#inject.

Returns whether for any element object == element:

(1..4).include?(2)                       # => true
(1..4).include?(5)                       # => false
(1..4).include?('2')                     # => false
%w[a b c d].include?('b')                # => true
%w[a b c d].include?('2')                # => false
{foo: 0, bar: 1, baz: 2}.include?(:foo)  # => true
{foo: 0, bar: 1, baz: 2}.include?('foo') # => false
{foo: 0, bar: 1, baz: 2}.include?(0)     # => false

Enumerable#member? is an alias for Enumerable#include?.

Returns an enumerator object generated from this enumerator and given enumerables.

e = (1..3).chain([4, 5])
e.to_a #=> [1, 2, 3, 4, 5]

Computes the sine of decimal to the specified number of digits of precision, numeric.

If decimal is Infinity or NaN, returns NaN.

BigMath.sin(BigMath.PI(5)/4, 5).to_s
#=> "0.70710678118654752440082036563292800375e0"

Returns true if coverage stats are currently being collected (after Coverage.start call, but before Coverage.result call)

Returns the short user name of the currently logged in user. Unfortunately, it is often rather easy to fool ::getlogin.

Avoid ::getlogin for security-related purposes.

If ::getlogin fails, try ::getpwuid.

See the unix manpage for getpwuid(3) for more detail.

e.g.

Etc.getlogin -> 'guest'

Allocate size bytes of memory and return the integer memory address for the allocated memory.

Shows the prompt and reads the inputted line with line editing. The inputted line is added to the history if add_hist is true.

Returns nil when the inputted line is empty and user inputs EOF (Presses ^D on UNIX).

Raises IOError exception if one of below conditions are satisfied.

  1. stdin was closed.

  2. stdout was closed.

This method supports thread. Switches the thread context when waits inputting line.

Supports line edit when inputs line. Provides VI and Emacs editing mode. Default is Emacs editing mode.

NOTE: Terminates ruby interpreter and does not return the terminal status after user pressed ā€˜^Cā€™ when wait inputting line. Give 3 examples that avoid it.

Can make as follows with Readline::HISTORY constant. It does not record to the history if the inputted line is empty or the same it as last one.

require "readline"

while buf = Readline.readline("> ", true)
  # p Readline::HISTORY.to_a
  Readline::HISTORY.pop if /^\s*$/ =~ buf

  begin
    if Readline::HISTORY[Readline::HISTORY.length-2] == buf
      Readline::HISTORY.pop
    end
  rescue IndexError
  end

  # p Readline::HISTORY.to_a
  print "-> ", buf, "\n"
end

Specifies a File object input that is input stream for Readline.readline method.

Returns the index of the current cursor position in Readline.line_buffer.

The index in Readline.line_buffer which matches the start of input-string passed to completion_proc is computed by subtracting the length of input-string from Readline.point.

start = (the length of input-string) - Readline.point

Raises NotImplementedError if the using readline library does not support.

Set the index of the current cursor position in Readline.line_buffer.

Raises NotImplementedError if the using readline library does not support.

See Readline.point.

Returns the log priority mask in effect. The mask is not reset by opening or closing syslog.

Sets the log priority mask. A method LOG_UPTO is defined to make it easier to set mask values. Example:

Syslog.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)

Alternatively, specific priorities can be selected and added together using binary OR. Example:

Syslog.mask = Syslog::LOG_MASK(Syslog::LOG_ERR) | Syslog::LOG_MASK(Syslog::LOG_CRIT)

The priority mask persists through calls to open() and close().

Returns an inspect() string summarizing the object state.

Returns self, for backward compatibility.

Decompresses string. Raises a Zlib::NeedDict exception if a preset dictionary is needed for decompression.

This method is almost equivalent to the following code:

def inflate(string)
  zstream = Zlib::Inflate.new
  buf = zstream.inflate(string)
  zstream.finish
  zstream.close
  buf
end

See also Zlib.deflate

Search took: 5ms  ·  Total Results: 1816