Base class of exceptions from OptionParser
.
Raises when there is an argument for a switch which takes no argument.
An SimpleRenewer
allows a TupleSpace
to check if a TupleEntry
is still alive.
Raised when trying to activate a gem, and the gem exists on the system, but not the requested version. Instead of rescuing from this class, make sure to rescue from the superclass Gem::LoadError
to catch all types of load errors.
Raised by Gem::Resolver
when a Gem::Dependency::Conflict reaches the toplevel. Indicates which dependencies were incompatible through conflict
and conflicting_dependencies
Signals that a file permission error is preventing the user from operating on the given directory.
Raised by Gem::Validator
when something is not right in a gem.
This class is responsible for generating initial code blocks that will then later be expanded.
The biggest concern when guessing code blocks, is accidentally grabbing one that contains only an “end”. In this example:
def dog begonn # mispelled `begin` puts "bark" end end
The following lines would be matched (from bottom to top):
1) end 2) puts "bark" end 3) begonn puts "bark" end
At this point it has no where else to expand, and it will yield this inner code as a block
Not a URI
component.
Raised when a mathematical function is evaluated outside of its domain of definition.
For example, since cos
returns values in the range -1..1, its inverse function acos
is only defined on that interval:
Math.acos(42)
produces:
Math::DomainError: Numerical argument is out of domain - "acos"
Raised when an invalid operation is attempted on a Fiber
, in particular when attempting to call/resume a dead fiber, attempting to yield from the root fiber, or calling a fiber across threads.
fiber = Fiber.new{} fiber.resume #=> nil fiber.resume #=> FiberError: dead fiber called
A class which allows both internal and external iteration.
An Enumerator
can be created by the following methods.
Most methods have two forms: a block form where the contents are evaluated for each item in the enumeration, and a non-block form which returns a new Enumerator
wrapping the iteration.
enumerator = %w(one two three).each puts enumerator.class # => Enumerator enumerator.each_with_object("foo") do |item, obj| puts "#{obj}: #{item}" end # foo: one # foo: two # foo: three enum_with_obj = enumerator.each_with_object("foo") puts enum_with_obj.class # => Enumerator enum_with_obj.each do |item, obj| puts "#{obj}: #{item}" end # foo: one # foo: two # foo: three
This allows you to chain Enumerators together. For example, you can map a list’s elements to strings containing the index and the element as a string via:
puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" } # => ["0:foo", "1:bar", "2:baz"] == External Iteration
An Enumerator
can also be used as an external iterator. For example, Enumerator#next
returns the next value of the iterator or raises StopIteration
if the Enumerator
is at the end.
e = [1,2,3].each # returns an enumerator object. puts e.next # => 1 puts e.next # => 2 puts e.next # => 3 puts e.next # raises StopIteration
next
, next_values
, peek
and peek_values
are the only methods which use external iteration (and Array#zip(Enumerable-not-Array)
which uses next
).
These methods do not affect other internal enumeration methods, unless the underlying iteration method itself has side-effect, e.g. IO#each_line
.
External iteration differs significantly from internal iteration due to using a Fiber:
- The Fiber adds some overhead compared to internal enumeration. - The stacktrace will only include the stack from the Enumerator, not above. - Fiber-local variables are *not* inherited inside the Enumerator Fiber, which instead starts with no Fiber-local variables. - Fiber storage variables *are* inherited and are designed to handle Enumerator Fibers. Assigning to a Fiber storage variable only affects the current Fiber, so if you want to change state in the caller Fiber of the Enumerator Fiber, you need to use an extra indirection (e.g., use some object in the Fiber storage variable and mutate some ivar of it).
Concretely:
Thread.current[:fiber_local] = 1 Fiber[:storage_var] = 1 e = Enumerator.new do |y| p Thread.current[:fiber_local] # for external iteration: nil, for internal iteration: 1 p Fiber[:storage_var] # => 1, inherited Fiber[:storage_var] += 1 y << 42 end p e.next # => 42 p Fiber[:storage_var] # => 1 (it ran in a different Fiber) e.each { p _1 } p Fiber[:storage_var] # => 2 (it ran in the same Fiber/"stack" as the current Fiber) == Convert External Iteration to Internal Iteration
You can use an external iterator to implement an internal iterator as follows:
def ext_each(e) while true begin vs = e.next_values rescue StopIteration return $!.result end y = yield(*vs) e.feed y end end o = Object.new def o.each puts yield puts yield(1) puts yield(1, 2) 3 end # use o.each as an internal iterator directly. puts o.each {|*x| puts x; [:b, *x] } # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3 # convert o.each to an external iterator for # implementing an internal iterator. puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] } # => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3
Raised to stop the iteration, in particular by Enumerator#next
. It is rescued by Kernel#loop
.
loop do puts "Hello" raise StopIteration puts "World" end puts "Done!"
produces:
Hello Done!
Raised when the interrupt signal is received, typically because the user has pressed Control-C (on most posix platforms). As such, it is a subclass of SignalException
.
begin puts "Press ctrl-C when you get bored" loop {} rescue Interrupt => e puts "Note: You will typically use Signal.trap instead." end
produces:
Press ctrl-C when you get bored
then waits until it is interrupted with Control-C and then prints:
Note: You will typically use Signal.trap instead.