Results for: "String#[]"

No documentation available

Represents a single line of code of a given source file

This object contains metadata about the line such as amount of indentation, if it is empty or not, and lexical data, such as if it has an ‘end` or a keyword in it.

Visibility of lines can be toggled off. Marking a line as invisible indicates that it should not be used for syntax checks. It’s functionally the same as commenting it out.

Example:

line = CodeLine.from_source("def foo\n").first
line.number => 1
line.empty? # => false
line.visible? # => true
line.mark_invisible
line.visible? # => false

Outputs code with highlighted lines

Whatever is passed to this class will be rendered even if it is “marked invisible” any filtering of output should be done before calling this class.

DisplayCodeWithLineNumbers.new(
  lines: lines,
  highlight_lines: [lines[2], lines[3]]
).call
# =>
    1
    2  def cat
  > 3    Dir.chdir
  > 4    end
    5  end
    6

Used for formatting invalid blocks

Explains syntax errors based on their source

example:

source = "def foo; puts 'lol'" # Note missing end
explain ExplainSyntax.new(
  code_lines: CodeLine.from_source(source)
).call
explain.errors.first
# => "Unmatched keyword, missing `end' ?"

When the error cannot be determined by lexical counting then ripper is run against the input and the raw ripper errors returned.

Example:

source = "1 * " # Note missing a second number
explain ExplainSyntax.new(
  code_lines: CodeLine.from_source(source)
).call
explain.errors.first
# => "syntax error, unexpected end-of-input"

Capture parse errors from ripper

Example:

puts RipperErrors.new(" def foo").call.errors
# => ["syntax error, unexpected end-of-input, expecting ';' or '\\n'"]

Tracks which lines various code blocks have expanded to and which are still unexplored

No documentation available

Not a URI component.

URI is valid, bad usage is not.

Base class for all URI classes. Implements generic URI syntax as per RFC 2396.

YAML::Store provides the same functionality as PStore, except it uses YAML to dump objects instead of Marshal.

Example

require 'yaml/store'

Person = Struct.new :first_name, :last_name

people = [Person.new("Bob", "Smith"), Person.new("Mary", "Johnson")]

store = YAML::Store.new "test.store"

store.transaction do
  store["people"] = people
  store["greeting"] = { "hello" => "world" }
end

After running the above code, the contents of “test.store” will be:

---
people:
- !ruby/struct:Person
  first_name: Bob
  last_name: Smith
- !ruby/struct:Person
  first_name: Mary
  last_name: Johnson
greeting:
  hello: world

Raised when a mathematical function is evaluated outside of its domain of definition.

For example, since cos returns values in the range -1..1, its inverse function acos is only defined on that interval:

Math.acos(42)

produces:

Math::DomainError: Numerical argument is out of domain - "acos"

Process::Status encapsulates the information on the status of a running or terminated system process. The built-in variable $? is either nil or a Process::Status object.

fork { exit 99 }   #=> 26557
Process.wait       #=> 26557
$?.class           #=> Process::Status
$?.to_i            #=> 25344
$? >> 8            #=> 99
$?.stopped?        #=> false
$?.exited?         #=> true
$?.exitstatus      #=> 99

Posix systems record information on processes using a 16-bit integer. The lower bits record the process status (stopped, exited, signaled) and the upper bits possibly contain additional information (for example the program’s return code in the case of exited processes). Pre Ruby 1.8, these bits were exposed directly to the Ruby program. Ruby now encapsulates these in a Process::Status object. To maximize compatibility, however, these objects retain a bit-oriented interface. In the descriptions that follow, when we talk about the integer value of stat, we’re referring to this 16 bit value.

ConditionVariable objects augment class Mutex. Using condition variables, it is possible to suspend while in the middle of a critical section until a resource becomes available.

Example:

mutex = Thread::Mutex.new
resource = Thread::ConditionVariable.new

a = Thread.new {
   mutex.synchronize {
     # Thread 'a' now needs the resource
     resource.wait(mutex)
     # 'a' can now have the resource
   }
}

b = Thread.new {
   mutex.synchronize {
     # Thread 'b' has finished using the resource
     resource.signal
   }
}

Raised by Encoding and String methods when a transcoding operation fails.

Raised by Encoding and String methods when the string being transcoded contains a byte invalid for the either the source or target encoding.

An internal representation of the backtrace. The user will never interact with objects of this class directly, but class methods can be used to get backtrace settings of the current session.

File::Constants provides file-related constants. All possible file constants are listed in the documentation but they may not all be present on your platform.

If the underlying platform doesn’t define a constant the corresponding Ruby constant is not defined.

Your platform documentations (e.g. man open(2)) may describe more detailed information.

Adds Windows type aliases to the including class for use with Fiddle::Importer.

The aliases added are:

exception to wait for reading. see IO.select.

exception to wait for writing. see IO.select.

Provides classes and methods to request, create and validate RFC3161-compliant timestamps. Request may be used to either create requests from scratch or to parse existing requests that again can be used to request timestamps from a timestamp server, e.g. via the net/http. The resulting timestamp response may be parsed using Response.

Please note that Response is read-only and immutable. To create a Response, an instance of Factory as well as a valid Request are needed.

Create a Response:

#Assumes ts.p12 is a PKCS#12-compatible file with a private key
#and a certificate that has an extended key usage of 'timeStamping'
p12 = OpenSSL::PKCS12.new(File.binread('ts.p12'), 'pwd')
md = OpenSSL::Digest.new('SHA1')
hash = md.digest(data) #some binary data to be timestamped
req = OpenSSL::Timestamp::Request.new
req.algorithm = 'SHA1'
req.message_imprint = hash
req.policy_id = "1.2.3.4.5"
req.nonce = 42
fac = OpenSSL::Timestamp::Factory.new
fac.gen_time = Time.now
fac.serial_number = 1
timestamp = fac.create_timestamp(p12.key, p12.certificate, req)

Verify a timestamp response:

#Assume we have a timestamp token in a file called ts.der
ts = OpenSSL::Timestamp::Response.new(File.binread('ts.der'))
#Assume we have the Request for this token in a file called req.der
req = OpenSSL::Timestamp::Request.new(File.binread('req.der'))
# Assume the associated root CA certificate is contained in a
# DER-encoded file named root.cer
root = OpenSSL::X509::Certificate.new(File.binread('root.cer'))
# get the necessary intermediate certificates, available in
# DER-encoded form in inter1.cer and inter2.cer
inter1 = OpenSSL::X509::Certificate.new(File.binread('inter1.cer'))
inter2 = OpenSSL::X509::Certificate.new(File.binread('inter2.cer'))
ts.verify(req, root, inter1, inter2) -> ts or raises an exception if validation fails

Socket::Constants provides socket-related constants. All possible socket constants are listed in the documentation but they may not all be present on your platform.

If the underlying platform doesn’t define a constant the corresponding Ruby constant is not defined.

No documentation available
Search took: 7ms  ·  Total Results: 2816