An instance of class IO (commonly called a stream) represents an input/output stream in the underlying operating system. Class IO is the basis for input and output in Ruby.
Class File
is the only class in the Ruby core that is a subclass of IO. Some classes in the Ruby standard library are also subclasses of IO; these include TCPSocket
and UDPSocket
.
The global constant ARGF
(also accessible as $<
) provides an IO-like stream that allows access to all file paths found in ARGV (or found in STDIN if ARGV is empty). ARGF
is not itself a subclass of IO.
Class StringIO
provides an IO-like stream that handles a String
. StringIO is not itself a subclass of IO.
Important objects based on IO include:
$stdin.
$stdout.
$stderr.
Instances of class File
.
An instance of IO may be created using:
IO.new
: returns a new IO object for the given integer file descriptor.
IO.open
: passes a new IO object to the given block.
IO.popen
: returns a new IO object that is connected to the $stdin and $stdout of a newly-launched subprocess.
Kernel#open
: Returns a new IO object connected to a given source: stream, file, or subprocess.
Like a File stream, an IO stream has:
A read/write mode, which may be read-only, write-only, or read/write; see Read/Write Mode.
A data mode, which may be text-only or binary; see Data Mode.
Internal and external encodings; see Encodings.
And like other IO streams, it has:
A position, which determines where in the stream the next read or write is to occur; see Position.
A line number, which is a special, line-oriented, “position” (different from the position mentioned above); see Line Number.
io/console
Extension io/console
provides numerous methods for interacting with the console; requiring it adds numerous methods to class IO.
Many examples here use these variables:
# English text with newlines. text = <<~EOT First line Second line Fourth line Fifth line EOT # Russian text. russian = "\u{442 435 441 442}" # => "тест" # Binary data. data = "\u9990\u9991\u9992\u9993\u9994" # Text file. File.write('t.txt', text) # File with Russian text. File.write('t.rus', russian) # File with binary data. f = File.new('t.dat', 'wb:UTF-16') f.write(data) f.close
A number of IO methods accept optional keyword arguments that determine how a new stream is to be opened:
:mode
: Stream mode.
:flags
: Integer file open flags; If mode
is also given, the two are bitwise-ORed.
:external_encoding
: External encoding for the stream.
:internal_encoding
: Internal encoding for the stream. '-'
is a synonym for the default internal encoding. If the value is nil
no conversion occurs.
:encoding
: Specifies external and internal encodings as 'extern:intern'
.
:textmode
: If a truthy value, specifies the mode as text-only, binary otherwise.
:binmode
: If a truthy value, specifies the mode as binary, text-only otherwise.
:autoclose
: If a truthy value, specifies that the fd
will close when the stream closes; otherwise it remains open.
:path:
If a string value is provided, it is used in inspect
and is available as path
method.
Also available are the options offered in String#encode
, which may control conversion between external internal encoding.
You can perform basic stream IO with these methods, which typically operate on multi-byte strings:
IO#read
: Reads and returns some or all of the remaining bytes from the stream.
IO#write
: Writes zero or more strings to the stream; each given object that is not already a string is converted via to_s
.
An IO stream has a nonnegative integer position, which is the byte offset at which the next read or write is to occur. A new stream has position zero (and line number zero); method rewind
resets the position (and line number) to zero.
The relevant methods:
IO#tell
(aliased as #pos
): Returns the current position (in bytes) in the stream.
IO#pos=
: Sets the position of the stream to a given integer new_position
(in bytes).
IO#seek
: Sets the position of the stream to a given integer offset
(in bytes), relative to a given position whence
(indicating the beginning, end, or current position).
IO#rewind
: Positions the stream at the beginning (also resetting the line number).
A new IO stream may be open for reading, open for writing, or both.
A stream is automatically closed when claimed by the garbage collector.
Attempted reading or writing on a closed stream raises an exception.
The relevant methods:
IO#close
: Closes the stream for both reading and writing.
IO#close_read
: Closes the stream for reading.
IO#close_write
: Closes the stream for writing.
IO#closed?
: Returns whether the stream is closed.
You can query whether a stream is positioned at its end:
IO#eof?
(also aliased as #eof
): Returns whether the stream is at end-of-stream.
You can reposition to end-of-stream by using method IO#seek
:
f = File.new('t.txt') f.eof? # => false f.seek(0, :END) f.eof? # => true f.close
Or by reading all stream content (which is slower than using IO#seek
):
f.rewind f.eof? # => false f.read # => "First line\nSecond line\n\nFourth line\nFifth line\n" f.eof? # => true
You can read an IO stream line-by-line using these methods:
IO#each_line
: Reads each remaining line, passing it to the given block.
IO#gets
: Returns the next line.
IO#readline
: Like gets
, but raises an exception at end-of-stream.
IO#readlines
: Returns all remaining lines in an array.
Each of these reader methods accepts:
An optional line separator, sep
; see Line Separator.
An optional line-size limit, limit
; see Line Limit.
For each of these reader methods, reading may begin mid-line, depending on the stream’s position; see Position:
f = File.new('t.txt') f.pos = 27 f.each_line {|line| p line } f.close
Output:
"rth line\n" "Fifth line\n"
You can write to an IO stream line-by-line using this method:
IO#puts
: Writes objects to the stream.
Each of these methods uses a line separator, which is the string that delimits lines:
The default line separator is the given by the global variable $/
, whose value is by default "\n"
. The line to be read next is all data from the current position to the next line separator:
f = File.new('t.txt') f.gets # => "First line\n" f.gets # => "Second line\n" f.gets # => "\n" f.gets # => "Fourth line\n" f.gets # => "Fifth line\n" f.close
You can specify a different line separator:
f = File.new('t.txt') f.gets('l') # => "First l" f.gets('li') # => "ine\nSecond li" f.gets('lin') # => "ne\n\nFourth lin" f.gets # => "e\n" f.close
There are two special line separators:
nil
: The entire stream is read into a single string:
f = File.new('t.txt') f.gets(nil) # => "First line\nSecond line\n\nFourth line\nFifth line\n" f.close
''
(the empty string): The next “paragraph” is read (paragraphs being separated by two consecutive line separators):
f = File.new('t.txt') f.gets('') # => "First line\nSecond line\n\n" f.gets('') # => "Fourth line\nFifth line\n" f.close
Each of these methods uses a line limit, which specifies that the number of bytes returned may not be (much) longer than the given limit
;
A multi-byte character will not be split, and so a line may be slightly longer than the given limit.
If limit
is not given, the line is determined only by sep
.
# Text with 1-byte characters. File.open('t.txt') {|f| f.gets(1) } # => "F" File.open('t.txt') {|f| f.gets(2) } # => "Fi" File.open('t.txt') {|f| f.gets(3) } # => "Fir" File.open('t.txt') {|f| f.gets(4) } # => "Firs" # No more than one line. File.open('t.txt') {|f| f.gets(10) } # => "First line" File.open('t.txt') {|f| f.gets(11) } # => "First line\n" File.open('t.txt') {|f| f.gets(12) } # => "First line\n" # Text with 2-byte characters, which will not be split. File.open('t.rus') {|f| f.gets(1).size } # => 1 File.open('t.rus') {|f| f.gets(2).size } # => 1 File.open('t.rus') {|f| f.gets(3).size } # => 2 File.open('t.rus') {|f| f.gets(4).size } # => 2
With arguments sep
and limit
given, combines the two behaviors:
Returns the next line as determined by line separator sep
.
But returns no more bytes than are allowed by the limit.
Example:
File.open('t.txt') {|f| f.gets('li', 20) } # => "First li" File.open('t.txt') {|f| f.gets('li', 2) } # => "Fi"
A readable IO stream has a non-negative integer line number.
The relevant methods:
IO#lineno
: Returns the line number.
IO#lineno=
: Resets and returns the line number.
Unless modified by a call to method IO#lineno=
, the line number is the number of lines read by certain line-oriented methods, according to the given line separator sep
:
IO.foreach
: Increments the line number on each call to the block.
IO#each_line
: Increments the line number on each call to the block.
IO#gets
: Increments the line number.
IO#readline
: Increments the line number.
IO#readlines
: Increments the line number for each line read.
A new stream is initially has line number zero (and position zero); method rewind
resets the line number (and position) to zero:
f = File.new('t.txt') f.lineno # => 0 f.gets # => "First line\n" f.lineno # => 1 f.rewind f.lineno # => 0 f.close
Reading lines from a stream usually changes its line number:
f = File.new('t.txt', 'r') f.lineno # => 0 f.readline # => "This is line one.\n" f.lineno # => 1 f.readline # => "This is the second line.\n" f.lineno # => 2 f.readline # => "Here's the third line.\n" f.lineno # => 3 f.eof? # => true f.close
Iterating over lines in a stream usually changes its line number:
File.open('t.txt') do |f| f.each_line do |line| p "position=#{f.pos} eof?=#{f.eof?} lineno=#{f.lineno}" end end
Output:
"position=11 eof?=false lineno=1" "position=23 eof?=false lineno=2" "position=24 eof?=false lineno=3" "position=36 eof?=false lineno=4" "position=47 eof?=true lineno=5"
Unlike the stream’s position, the line number does not affect where the next read or write will occur:
f = File.new('t.txt') f.lineno = 1000 f.lineno # => 1000 f.gets # => "First line\n" f.lineno # => 1001 f.close
Associated with the line number is the global variable $.
:
When a stream is opened, $.
is not set; its value is left over from previous activity in the process:
$. = 41 f = File.new('t.txt') $. = 41 # => 41 f.close
When a stream is read, #.
is set to the line number for that stream:
f0 = File.new('t.txt') f1 = File.new('t.dat') f0.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] $. # => 5 f1.readlines # => ["\xFE\xFF\x99\x90\x99\x91\x99\x92\x99\x93\x99\x94"] $. # => 1 f0.close f1.close
Methods IO#rewind
and IO#seek
do not affect $.
:
f = File.new('t.txt') f.readlines # => ["First line\n", "Second line\n", "\n", "Fourth line\n", "Fifth line\n"] $. # => 5 f.rewind f.seek(0, :SET) $. # => 5 f.close
You can process an IO stream character-by-character using these methods:
IO#getc
: Reads and returns the next character from the stream.
IO#readchar
: Like getc
, but raises an exception at end-of-stream.
IO#ungetc
: Pushes back (“unshifts”) a character or integer onto the stream.
IO#putc
: Writes a character to the stream.
IO#each_char
: Reads each remaining character in the stream, passing the character to the given block.
You can process an IO stream byte-by-byte using these methods:
IO#getbyte
: Returns the next 8-bit byte as an integer in range 0..255.
IO#readbyte
: Like getbyte
, but raises an exception if at end-of-stream.
IO#ungetbyte
: Pushes back (“unshifts”) a byte back onto the stream.
IO#each_byte
: Reads each remaining byte in the stream, passing the byte to the given block.
You can process an IO stream codepoint-by-codepoint:
IO#each_codepoint
: Reads each remaining codepoint, passing it to the given block.
First, what’s elsewhere. Class IO:
Inherits from class Object.
Includes module Enumerable, which provides dozens of additional methods.
Here, class IO provides methods that are useful for:
::new
(aliased as ::for_fd
): Creates and returns a new IO object for the given integer file descriptor.
::open
: Creates a new IO object.
::pipe
: Creates a connected pair of reader and writer IO objects.
::popen
: Creates an IO object to interact with a subprocess.
::select
: Selects which given IO instances are ready for reading, writing, or have pending exceptions.
::binread
: Returns a binary string with all or a subset of bytes from the given file.
::read
: Returns a string with all or a subset of bytes from the given file.
::readlines
: Returns an array of strings, which are the lines from the given file.
getbyte
: Returns the next 8-bit byte read from self
as an integer.
getc
: Returns the next character read from self
as a string.
gets
: Returns the line read from self
.
pread
: Returns all or the next n bytes read from self
, not updating the receiver’s offset.
read
: Returns all remaining or the next n bytes read from self
for a given n.
read_nonblock
: the next n bytes read from self
for a given n, in non-block mode.
readbyte
: Returns the next byte read from self
; same as getbyte
, but raises an exception on end-of-stream.
readchar
: Returns the next character read from self
; same as getc
, but raises an exception on end-of-stream.
readline
: Returns the next line read from self
; same as getline, but raises an exception of end-of-stream.
readlines
: Returns an array of all lines read read from self
.
readpartial
: Returns up to the given number of bytes from self
.
::binwrite
: Writes the given string to the file at the given filepath, in binary mode.
::write
: Writes the given string to self
.
<<
: Appends the given string to self
.
print
: Prints last read line or given objects to self
.
printf
: Writes to self
based on the given format string and objects.
putc
: Writes a character to self
.
puts
: Writes lines to self
, making sure line ends with a newline.
pwrite
: Writes the given string at the given offset, not updating the receiver’s offset.
write
: Writes one or more given strings to self
.
write_nonblock
: Writes one or more given strings to self
in non-blocking mode.
lineno
: Returns the current line number in self
.
lineno=
: Sets the line number is self
.
pos
(aliased as tell
): Returns the current byte offset in self
.
pos=
: Sets the byte offset in self
.
reopen
: Reassociates self
with a new or existing IO stream.
rewind
: Positions self
to the beginning of input.
seek
: Sets the offset for self
relative to given position.
::foreach
: Yields each line of given file to the block.
each
(aliased as each_line
): Calls the given block with each successive line in self
.
each_byte
: Calls the given block with each successive byte in self
as an integer.
each_char
: Calls the given block with each successive character in self
as a string.
each_codepoint
: Calls the given block with each successive codepoint in self
as an integer.
autoclose=
: Sets whether self
auto-closes.
binmode
: Sets self
to binary mode.
close
: Closes self
.
close_on_exec=
: Sets the close-on-exec flag.
close_read
: Closes self
for reading.
close_write
: Closes self
for writing.
set_encoding
: Sets the encoding for self
.
set_encoding_by_bom
: Sets the encoding for self
, based on its Unicode byte-order-mark.
sync=
: Sets the sync-mode to the given value.
autoclose?
: Returns whether self
auto-closes.
binmode?
: Returns whether self
is in binary mode.
close_on_exec?
: Returns the close-on-exec flag for self
.
closed?
: Returns whether self
is closed.
eof?
(aliased as eof
): Returns whether self
is at end-of-stream.
external_encoding
: Returns the external encoding object for self
.
fileno
(aliased as to_i
): Returns the integer file descriptor for self
internal_encoding
: Returns the internal encoding object for self
.
pid
: Returns the process ID of a child process associated with self
, if self
was created by ::popen
.
stat
: Returns the File::Stat
object containing status information for self
.
sync
: Returns whether self
is in sync-mode.
tty?
(aliased as isatty
): Returns whether self
is a terminal.
fdatasync
: Immediately writes all buffered data in self
to disk.
flush
: Flushes any buffered data within self
to the underlying operating system.
fsync
: Immediately writes all buffered data and attributes in self
to disk.
ungetbyte
: Prepends buffer for self
with given integer byte or string.
ungetc
: Prepends buffer for self
with given string.
::sysopen
: Opens the file given by its path, returning the integer file descriptor.
advise
: Announces the intention to access data from self
in a specific way.
fcntl
: Passes a low-level command to the file specified by the given file descriptor.
ioctl
: Passes a low-level command to the device specified by the given file descriptor.
sysread
: Returns up to the next n bytes read from self using a low-level read.
sysseek
: Sets the offset for self
.
syswrite
: Writes the given string to self
using a low-level write.
::copy_stream
: Copies data from a source to a destination, each of which is a filepath or an IO-like object.
::try_convert
: Returns a new IO object resulting from converting the given object.
inspect
: Returns the string representation of self
.
An OpenStruct
is a data structure, similar to a Hash
, that allows the definition of arbitrary attributes with their accompanying values. This is accomplished by using Ruby’s metaprogramming to define methods on the class itself.
require "ostruct" person = OpenStruct.new person.name = "John Smith" person.age = 70 person.name # => "John Smith" person.age # => 70 person.address # => nil
An OpenStruct
employs a Hash
internally to store the attributes and values and can even be initialized with one:
australia = OpenStruct.new(:country => "Australia", :capital => "Canberra") # => #<OpenStruct country="Australia", capital="Canberra">
Hash
keys with spaces or characters that could normally not be used for method calls (e.g. ()[]*
) will not be immediately available on the OpenStruct
object as a method for retrieval or assignment, but can still be reached through the Object#send
method or using [].
measurements = OpenStruct.new("length (in inches)" => 24) measurements[:"length (in inches)"] # => 24 measurements.send("length (in inches)") # => 24 message = OpenStruct.new(:queued? => true) message.queued? # => true message.send("queued?=", false) message.queued? # => false
Removing the presence of an attribute requires the execution of the delete_field
method as setting the property value to nil
will not remove the attribute.
first_pet = OpenStruct.new(:name => "Rowdy", :owner => "John Smith") second_pet = OpenStruct.new(:name => "Rowdy") first_pet.owner = nil first_pet # => #<OpenStruct name="Rowdy", owner=nil> first_pet == second_pet # => false first_pet.delete_field(:owner) first_pet # => #<OpenStruct name="Rowdy"> first_pet == second_pet # => true
Ractor
compatibility: A frozen OpenStruct
with shareable values is itself shareable.
An OpenStruct
utilizes Ruby’s method lookup structure to find and define the necessary methods for properties. This is accomplished through the methods method_missing and define_singleton_method.
This should be a consideration if there is a concern about the performance of the objects that are created, as there is much more overhead in the setting of these properties compared to using a Hash
or a Struct
. Creating an open struct from a small Hash
and accessing a few of the entries can be 200 times slower than accessing the hash directly.
This is a potential security issue; building OpenStruct
from untrusted user data (e.g. JSON
web request) may be susceptible to a “symbol denial of service” attack since the keys create methods and names of methods are never garbage collected.
This may also be the source of incompatibilities between Ruby versions:
o = OpenStruct.new o.then # => nil in Ruby < 2.6, enumerator for Ruby >= 2.6
Builtin methods may be overwritten this way, which may be a source of bugs or security issues:
o = OpenStruct.new o.methods # => [:to_h, :marshal_load, :marshal_dump, :each_pair, ... o.methods = [:foo, :bar] o.methods # => [:foo, :bar]
To help remedy clashes, OpenStruct
uses only protected/private methods ending with !
and defines aliases for builtin public methods by adding a !
:
o = OpenStruct.new(make: 'Bentley', class: :luxury) o.class # => :luxury o.class! # => OpenStruct
It is recommended (but not enforced) to not use fields ending in !
; Note that a subclass’ methods may not be overwritten, nor can OpenStruct’s own methods ending with !
.
For all these reasons, consider not using OpenStruct
at all.
Class Struct provides a convenient way to create a simple class that can store and fetch values.
This example creates a subclass of Struct
, Struct::Customer
; the first argument, a string, is the name of the subclass; the other arguments, symbols, determine the members of the new subclass.
Customer = Struct.new('Customer', :name, :address, :zip) Customer.name # => "Struct::Customer" Customer.class # => Class Customer.superclass # => Struct
Corresponding to each member are two methods, a writer and a reader, that store and fetch values:
methods = Customer.instance_methods false methods # => [:zip, :address=, :zip=, :address, :name, :name=]
An instance of the subclass may be created, and its members assigned values, via method ::new
:
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe # => #<struct Struct::Customer name="Joe Smith", address="123 Maple, Anytown NC", zip=12345>
The member values may be managed thus:
joe.name # => "Joe Smith" joe.name = 'Joseph Smith' joe.name # => "Joseph Smith"
And thus; note that member name may be expressed as either a string or a symbol:
joe[:name] # => "Joseph Smith" joe[:name] = 'Joseph Smith, Jr.' joe['name'] # => "Joseph Smith, Jr."
See Struct::new
.
First, what’s elsewhere. Class Struct:
Inherits from class Object.
Includes module Enumerable, which provides dozens of additional methods.
See also Data
, which is a somewhat similar, but stricter concept for defining immutable value objects.
Here, class Struct provides methods that are useful for:
Struct
Subclass ::new
: Returns a new subclass of Struct.
==
: Returns whether a given object is equal to self
, using ==
to compare member values.
eql?
: Returns whether a given object is equal to self
, using eql?
to compare member values.
[]
: Returns the value associated with a given member name.
to_a
, values
, deconstruct
: Returns the member values in self
as an array.
deconstruct_keys
: Returns a hash of the name/value pairs for given member names.
dig
: Returns the object in nested objects that is specified by a given member name and additional arguments.
members
: Returns an array of the member names.
select
, filter
: Returns an array of member values from self
, as selected by the given block.
values_at
: Returns an array containing values for given member names.
[]=
: Assigns a given value to a given member name.
each
: Calls a given block with each member name.
each_pair
: Calls a given block with each member name/value pair.
UNIXServer
represents a UNIX domain stream server socket.
UNIXSocket
represents a UNIX domain stream client socket.
IO streams for strings, with access similar to IO
; see IO
.
Examples on this page assume that StringIO has been required:
require 'stringio'
BasicObject
is the parent class of all classes in Ruby. It’s an explicit blank class.
BasicObject
can be used for creating object hierarchies independent of Ruby’s object hierarchy, proxy objects like the Delegator
class, or other uses where namespace pollution from Ruby’s methods and classes must be avoided.
To avoid polluting BasicObject
for other users an appropriately named subclass of BasicObject
should be created instead of directly modifying BasicObject:
class MyObjectSystem < BasicObject end
BasicObject
does not include Kernel
(for methods like puts
) and BasicObject
is outside of the namespace of the standard library so common classes will not be found without using a full class path.
A variety of strategies can be used to provide useful portions of the standard library to subclasses of BasicObject
. A subclass could include Kernel
to obtain puts
, exit
, etc. A custom Kernel-like module could be created and included or delegation can be used via method_missing
:
class MyObjectSystem < BasicObject DELEGATE = [:puts, :p] def method_missing(name, *args, &block) return super unless DELEGATE.include? name ::Kernel.send(name, *args, &block) end def respond_to_missing?(name, include_private = false) DELEGATE.include?(name) or super end end
Access to classes and modules from the Ruby standard library can be obtained in a BasicObject
subclass by referencing the desired constant from the root like ::File
or ::Enumerator
. Like method_missing
, const_missing can be used to delegate constant lookup to Object
:
class MyObjectSystem < BasicObject def self.const_missing(name) ::Object.const_get(name) end end
These are the methods defined for BasicObject:
::new
: Returns a new BasicObject instance.
!
: Returns the boolean negation of self
: true
or false
.
!=
: Returns whether self
and the given object are not equal.
==
: Returns whether self
and the given object are equivalent.
__id__
: Returns the integer object identifier for self
.
__send__
: Calls the method identified by the given symbol.
equal?
: Returns whether self
and the given object are the same object.
instance_eval
: Evaluates the given string or block in the context of self
.
instance_exec
: Executes the given block in the context of self
, passing the given arguments.
Raised when an IO
operation fails.
File.open("/etc/hosts") {|f| f << "example"} #=> IOError: not opened for writing File.open("/etc/hosts") {|f| f.close; f.read } #=> IOError: closed stream
Note that some IO
failures raise SystemCallError
s and these are not subclasses of IOError:
File.open("does/not/exist") #=> Errno::ENOENT: No such file or directory - does/not/exist
Class GetoptLong provides parsing both for options and for regular arguments.
Using GetoptLong, you can define options for your program. The program can then capture and respond to whatever options are included in the command that executes the program.
A simple example: file simple.rb
:
require 'getoptlong' options = GetoptLong.new( ['--number', '-n', GetoptLong::REQUIRED_ARGUMENT], ['--verbose', '-v', GetoptLong::OPTIONAL_ARGUMENT], ['--help', '-h', GetoptLong::NO_ARGUMENT] )
If you are somewhat familiar with options, you may want to skip to this full example.
A GetoptLong option has:
A string option name.
Zero or more string aliases for the name.
An option type.
Options may be defined by calling singleton method GetoptLong.new
, which returns a new GetoptLong object. Options may then be processed by calling other methods such as GetoptLong#each
.
In the array that defines an option, the first element is the string option name. Often the name takes the ‘long’ form, beginning with two hyphens.
The option name may have any number of aliases, which are defined by additional string elements.
The name and each alias must be of one of two forms:
Two hyphens, followed by one or more letters.
One hyphen, followed by a single letter.
File
aliases.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', '-x', '--aaa', '-a', '-p', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
An option may be cited by its name, or by any of its aliases; the parsed option always reports the name, not an alias:
$ ruby aliases.rb -a -p --xxx --aaa -x
Output:
["--xxx", ""] ["--xxx", ""] ["--xxx", ""] ["--xxx", ""] ["--xxx", ""]
An option may also be cited by an abbreviation of its name or any alias, as long as that abbreviation is unique among the options.
File
abbrev.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::NO_ARGUMENT], ['--xyz', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
Command line:
$ ruby abbrev.rb --xxx --xx --xyz --xy
Output:
["--xxx", ""] ["--xxx", ""] ["--xyz", ""] ["--xyz", ""]
This command line raises GetoptLong::AmbiguousOption
:
$ ruby abbrev.rb --x
An option may be cited more than once:
$ ruby abbrev.rb --xxx --xyz --xxx --xyz
Output:
["--xxx", ""] ["--xyz", ""] ["--xxx", ""] ["--xyz", ""]
A option-like token that appears anywhere after the token --
is treated as an ordinary argument, and is not processed as an option:
$ ruby abbrev.rb --xxx --xyz -- --xxx --xyz
Output:
["--xxx", ""] ["--xyz", ""]
Each option definition includes an option type, which controls whether the option takes an argument.
File
types.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.each do |option, argument| p [option, argument] end
Note that an option type has to do with the option argument (whether it is required, optional, or forbidden), not with whether the option itself is required.
An option of type GetoptLong::REQUIRED_ARGUMENT
must be followed by an argument, which is associated with that option:
$ ruby types.rb --xxx foo
Output:
["--xxx", "foo"]
If the option is not last, its argument is whatever follows it (even if the argument looks like another option):
$ ruby types.rb --xxx --yyy
Output:
["--xxx", "--yyy"]
If the option is last, an exception is raised:
$ ruby types.rb # Raises GetoptLong::MissingArgument
An option of type GetoptLong::OPTIONAL_ARGUMENT
may be followed by an argument, which if given is associated with that option.
If the option is last, it does not have an argument:
$ ruby types.rb --yyy
Output:
["--yyy", ""]
If the option is followed by another option, it does not have an argument:
$ ruby types.rb --yyy --zzz
Output:
["--yyy", ""] ["--zzz", ""]
Otherwise the option is followed by its argument, which is associated with that option:
$ ruby types.rb --yyy foo
Output:
["--yyy", "foo"]
An option of type GetoptLong::NO_ARGUMENT
takes no argument:
ruby types.rb --zzz foo
Output:
["--zzz", ""]
You can process options either with method each
and a block, or with method get
.
During processing, each found option is removed, along with its argument if there is one. After processing, each remaining element was neither an option nor the argument for an option.
File
argv.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby argv.rb --xxx Foo --yyy Bar Baz --zzz Bat Bam
Output:
Original ARGV: ["--xxx", "Foo", "--yyy", "Bar", "Baz", "--zzz", "Bat", "Bam"] ["--xxx", "Foo"] ["--yyy", "Bar"] ["--zzz", ""] Remaining ARGV: ["Baz", "Bat", "Bam"]
There are three settings that control the way the options are interpreted:
PERMUTE
.
REQUIRE_ORDER
.
RETURN_IN_ORDER
.
The initial setting for a new GetoptLong object is REQUIRE_ORDER
if environment variable POSIXLY_CORRECT
is defined, PERMUTE
otherwise.
In the PERMUTE
ordering, options and other, non-option, arguments may appear in any order and any mixture.
File
permute.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby permute.rb Foo --zzz Bar --xxx Baz --yyy Bat Bam --xxx Bag Bah
Output:
Original ARGV: ["Foo", "--zzz", "Bar", "--xxx", "Baz", "--yyy", "Bat", "Bam", "--xxx", "Bag", "Bah"] ["--zzz", ""] ["--xxx", "Baz"] ["--yyy", "Bat"] ["--xxx", "Bag"] Remaining ARGV: ["Foo", "Bar", "Bam", "Bah"]
In the REQUIRE_ORDER
ordering, all options precede all non-options; that is, each word after the first non-option word is treated as a non-option word (even if it begins with a hyphen).
File
require_order.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.ordering = GetoptLong::REQUIRE_ORDER puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby require_order.rb --xxx Foo Bar --xxx Baz --yyy Bat -zzz
Output:
Original ARGV: ["--xxx", "Foo", "Bar", "--xxx", "Baz", "--yyy", "Bat", "-zzz"] ["--xxx", "Foo"] Remaining ARGV: ["Bar", "--xxx", "Baz", "--yyy", "Bat", "-zzz"]
In the RETURN_IN_ORDER
ordering, every word is treated as an option. A word that begins with a hyphen (or two) is treated in the usual way; a word word
that does not so begin is treated as an option whose name is an empty string, and whose value is word
.
File
return_in_order.rb
:
require 'getoptlong' options = GetoptLong.new( ['--xxx', GetoptLong::REQUIRED_ARGUMENT], ['--yyy', GetoptLong::OPTIONAL_ARGUMENT], ['--zzz', GetoptLong::NO_ARGUMENT] ) options.ordering = GetoptLong::RETURN_IN_ORDER puts "Original ARGV: #{ARGV}" options.each do |option, argument| p [option, argument] end puts "Remaining ARGV: #{ARGV}"
Command line:
$ ruby return_in_order.rb Foo --xxx Bar Baz --zzz Bat Bam
Output:
Original ARGV: ["Foo", "--xxx", "Bar", "Baz", "--zzz", "Bat", "Bam"] ["", "Foo"] ["--xxx", "Bar"] ["", "Baz"] ["--zzz", ""] ["", "Bat"] ["", "Bam"] Remaining ARGV: []
File
fibonacci.rb
:
require 'getoptlong' options = GetoptLong.new( ['--number', '-n', GetoptLong::REQUIRED_ARGUMENT], ['--verbose', '-v', GetoptLong::OPTIONAL_ARGUMENT], ['--help', '-h', GetoptLong::NO_ARGUMENT] ) def help(status = 0) puts <<~HELP Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help. HELP exit(status) end def print_fibonacci (number) return 0 if number == 0 return 1 if number == 1 or number == 2 i = 0 j = 1 (2..number).each do k = i + j i = j j = k puts j if @verbose end puts j unless @verbose end options.each do |option, argument| case option when '--number' @number = argument.to_i when '--verbose' @verbose = if argument.empty? true elsif argument.match(/true/i) true elsif argument.match(/false/i) false else puts '--verbose argument must be true or false' help(255) end when '--help' help end end unless @number puts 'Option --number is required.' help(255) end print_fibonacci(@number)
Command line:
$ ruby fibonacci.rb
Output:
Option --number is required. Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help.
Command line:
$ ruby fibonacci.rb --number
Raises GetoptLong::MissingArgument
:
fibonacci.rb: option `--number' requires an argument
Command line:
$ ruby fibonacci.rb --number 6
Output:
8
Command line:
$ ruby fibonacci.rb --number 6 --verbose
Output:
1 2 3 5 8
Command line:
$ ruby fibonacci.rb –number 6 –verbose yes
Output:
--verbose argument must be true or false Usage: -n n, --number n: Compute Fibonacci number for n. -v [boolean], --verbose [boolean]: Show intermediate results; default is 'false'. -h, --help: Show this help.
Ractor
is an Actor-model abstraction for Ruby that provides thread-safe parallel execution.
Ractor.new
can make a new Ractor
, and it will run in parallel.
# The simplest ractor r = Ractor.new {puts "I am in Ractor!"} r.take # wait for it to finish # here "I am in Ractor!" would be printed
Ractors do not share usual objects, so the same kinds of thread-safety concerns such as data-race, race-conditions are not available on multi-ractor programming.
To achieve this, ractors severely limit object sharing between different ractors. For example, unlike threads, ractors can’t access each other’s objects, nor any objects through variables of the outer scope.
a = 1 r = Ractor.new {puts "I am in Ractor! a=#{a}"} # fails immediately with # ArgumentError (can not isolate a Proc because it accesses outer variables (a).)
On CRuby (the default implementation), Global Virtual Machine Lock (GVL) is held per ractor, so ractors are performed in parallel without locking each other.
Instead of accessing the shared state, the objects should be passed to and from ractors via sending and receiving objects as messages.
a = 1 r = Ractor.new do a_in_ractor = receive # receive blocks till somebody will pass message puts "I am in Ractor! a=#{a_in_ractor}" end r.send(a) # pass it r.take # here "I am in Ractor! a=1" would be printed
There are two pairs of methods for sending/receiving messages:
Ractor#send
and Ractor.receive
for when the sender knows the receiver (push);
Ractor.yield
and Ractor#take
for when the receiver knows the sender (pull);
In addition to that, an argument to Ractor.new
would be passed to block and available there as if received by Ractor.receive
, and the last block value would be sent outside of the ractor as if sent by Ractor.yield
.
A little demonstration on a classic ping-pong:
server = Ractor.new do puts "Server starts: #{self.inspect}" puts "Server sends: ping" Ractor.yield 'ping' # The server doesn't know the receiver and sends to whoever interested received = Ractor.receive # The server doesn't know the sender and receives from whoever sent puts "Server received: #{received}" end client = Ractor.new(server) do |srv| # The server is sent inside client, and available as srv puts "Client starts: #{self.inspect}" received = srv.take # The Client takes a message specifically from the server puts "Client received from " \ "#{srv.inspect}: #{received}" puts "Client sends to " \ "#{srv.inspect}: pong" srv.send 'pong' # The client sends a message specifically to the server end [client, server].each(&:take) # Wait till they both finish
This will output:
Server starts: #<Ractor:#2 test.rb:1 running> Server sends: ping Client starts: #<Ractor:#3 test.rb:8 running> Client received from #<Ractor:#2 rac.rb:1 blocking>: ping Client sends to #<Ractor:#2 rac.rb:1 blocking>: pong Server received: pong
It is said that Ractor
receives messages via the incoming port, and sends them to the outgoing port. Either one can be disabled with Ractor#close_incoming
and Ractor#close_outgoing
respectively. If a ractor terminated, its ports will be closed automatically.
When the object is sent to and from the ractor, it is important to understand whether the object is shareable or unshareable. Most of objects are unshareable objects.
Shareable objects are basically those which can be used by several threads without compromising thread-safety; e.g. immutable ones. Ractor.shareable?
allows to check this, and Ractor.make_shareable
tries to make object shareable if it is not.
Ractor.shareable?(1) #=> true -- numbers and other immutable basic values are Ractor.shareable?('foo') #=> false, unless the string is frozen due to # freeze_string_literals: true Ractor.shareable?('foo'.freeze) #=> true ary = ['hello', 'world'] ary.frozen? #=> false ary[0].frozen? #=> false Ractor.make_shareable(ary) ary.frozen? #=> true ary[0].frozen? #=> true ary[1].frozen? #=> true
When a shareable object is sent (via send
or Ractor.yield
), no additional processing happens, and it just becomes usable by both ractors. When an unshareable object is sent, it can be either copied or moved. The first is the default, and it makes the object’s full copy by deep cloning of non-shareable parts of its structure.
data = ['foo', 'bar'.freeze] r = Ractor.new do data2 = Ractor.receive puts "In ractor: #{data2.object_id}, #{data2[0].object_id}, #{data2[1].object_id}" end r.send(data) r.take puts "Outside : #{data.object_id}, #{data[0].object_id}, #{data[1].object_id}"
This will output:
In ractor: 340, 360, 320 Outside : 380, 400, 320
(Note that object id of both array and non-frozen string inside array have changed inside the ractor, showing it is different objects. But the second array’s element, which is a shareable frozen string, has the same object_id.)
Deep cloning of the objects may be slow, and sometimes impossible. Alternatively, move: true
may be used on sending. This will move the object to the receiving ractor, making it inaccessible for a sending ractor.
data = ['foo', 'bar'] r = Ractor.new do data_in_ractor = Ractor.receive puts "In ractor: #{data_in_ractor.object_id}, #{data_in_ractor[0].object_id}" end r.send(data, move: true) r.take puts "Outside: moved? #{Ractor::MovedObject === data}" puts "Outside: #{data.inspect}"
This will output:
In ractor: 100, 120 Outside: moved? true test.rb:9:in `method_missing': can not send any methods to a moved object (Ractor::MovedError)
Notice that even inspect
(and more basic methods like __id__
) is inaccessible on a moved object.
Besides frozen objects, there are shareable objects. Class
and Module
objects are shareable so the Class/Module definitions are shared between ractors. Ractor
objects are also shareable objects. All operations for the shareable mutable objects are thread-safe, so the thread-safety property will be kept. We can not define mutable shareable objects in Ruby, but C extensions can introduce them.
It is prohibited to access instance variables of mutable shareable objects (especially Modules and classes) from ractors other than main:
class C class << self attr_accessor :tricky end end C.tricky = 'test' r = Ractor.new(C) do |cls| puts "I see #{cls}" puts "I can't see #{cls.tricky}" end r.take # I see C # can not access instance variables of classes/modules from non-main Ractors (RuntimeError)
Ractors can access constants if they are shareable. The main Ractor
is the only one that can access non-shareable constants.
GOOD = 'good'.freeze BAD = 'bad' r = Ractor.new do puts "GOOD=#{GOOD}" puts "BAD=#{BAD}" end r.take # GOOD=good # can not access non-shareable objects in constant Object::BAD by non-main Ractor. (NameError) # Consider the same C class from above r = Ractor.new do puts "I see #{C}" puts "I can't see #{C.tricky}" end r.take # I see C # can not access instance variables of classes/modules from non-main Ractors (RuntimeError)
See also the description of # shareable_constant_value
pragma in Comments syntax explanation.
Each ractor creates its own thread. New threads can be created from inside ractor (and, on CRuby, sharing GVL with other threads of this ractor).
r = Ractor.new do a = 1 Thread.new {puts "Thread in ractor: a=#{a}"}.join end r.take # Here "Thread in ractor: a=1" will be printed
In examples below, sometimes we use the following method to wait till ractors that are not currently blocked will finish (or process till next blocking) method.
def wait sleep(0.1) end
It is **only for demonstration purposes** and shouldn’t be used in a real code. Most of the times, just take
is used to wait till ractor will finish.
See Ractor design doc for more details.
newton.rb
Solves the nonlinear algebraic equation system f = 0 by Newton’s method. This program is not dependent on BigDecimal
.
To call:
n = nlsolve(f,x) where n is the number of iterations required, x is the initial value vector f is an Object which is used to compute the values of the equations to be solved.
It must provide the following methods:
returns the values of all functions at x
returns 0.0
returns 1.0
returns 2.0
returns 10.0
returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
On exit, x is the solution vector.
JSON is a lightweight data-interchange format.
A JSON value is one of the following:
Double-quoted text: "foo"
.
Number: 1
, 1.0
, 2.0e2
.
Boolean: true
, false
.
Null: null
.
Array: an ordered list of values, enclosed by square brackets:
["foo", 1, 1.0, 2.0e2, true, false, null]
Object: a collection of name/value pairs, enclosed by curly braces; each name is double-quoted text; the values may be any JSON values:
{"a": "foo", "b": 1, "c": 1.0, "d": 2.0e2, "e": true, "f": false, "g": null}
A JSON array or object may contain nested arrays, objects, and scalars to any depth:
{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]} [{"foo": 0, "bar": 1}, ["baz", 2]]
To make module JSON available in your code, begin with:
require 'json'
All examples here assume that this has been done.
You can parse a String containing JSON data using either of two methods:
JSON.parse(source, opts)
JSON.parse!(source, opts)
where
source
is a Ruby object.
opts
is a Hash object containing options that control both input allowed and output formatting.
The difference between the two methods is that JSON.parse!
omits some checks and may not be safe for some source
data; use it only for data from trusted sources. Use the safer method JSON.parse
for less trusted sources.
When source
is a JSON array, JSON.parse
by default returns a Ruby Array:
json = '["foo", 1, 1.0, 2.0e2, true, false, null]' ruby = JSON.parse(json) ruby # => ["foo", 1, 1.0, 200.0, true, false, nil] ruby.class # => Array
The JSON array may contain nested arrays, objects, and scalars to any depth:
json = '[{"foo": 0, "bar": 1}, ["baz", 2]]' JSON.parse(json) # => [{"foo"=>0, "bar"=>1}, ["baz", 2]]
When the source is a JSON object, JSON.parse
by default returns a Ruby Hash:
json = '{"a": "foo", "b": 1, "c": 1.0, "d": 2.0e2, "e": true, "f": false, "g": null}' ruby = JSON.parse(json) ruby # => {"a"=>"foo", "b"=>1, "c"=>1.0, "d"=>200.0, "e"=>true, "f"=>false, "g"=>nil} ruby.class # => Hash
The JSON object may contain nested arrays, objects, and scalars to any depth:
json = '{"foo": {"bar": 1, "baz": 2}, "bat": [0, 1, 2]}' JSON.parse(json) # => {"foo"=>{"bar"=>1, "baz"=>2}, "bat"=>[0, 1, 2]}
When the source is a JSON scalar (not an array or object), JSON.parse
returns a Ruby scalar.
String:
ruby = JSON.parse('"foo"') ruby # => 'foo' ruby.class # => String
Integer:
ruby = JSON.parse('1') ruby # => 1 ruby.class # => Integer
Float:
ruby = JSON.parse('1.0') ruby # => 1.0 ruby.class # => Float ruby = JSON.parse('2.0e2') ruby # => 200 ruby.class # => Float
Boolean:
ruby = JSON.parse('true') ruby # => true ruby.class # => TrueClass ruby = JSON.parse('false') ruby # => false ruby.class # => FalseClass
Null:
ruby = JSON.parse('null') ruby # => nil ruby.class # => NilClass
Option max_nesting
(Integer) specifies the maximum nesting depth allowed; defaults to 100
; specify false
to disable depth checking.
With the default, false
:
source = '[0, [1, [2, [3]]]]' ruby = JSON.parse(source) ruby # => [0, [1, [2, [3]]]]
Too deep:
# Raises JSON::NestingError (nesting of 2 is too deep): JSON.parse(source, {max_nesting: 1})
Bad value:
# Raises TypeError (wrong argument type Symbol (expected Fixnum)): JSON.parse(source, {max_nesting: :foo})
Option allow_nan
(boolean) specifies whether to allow NaN
, Infinity
, and MinusInfinity
in source
; defaults to false
.
With the default, false
:
# Raises JSON::ParserError (225: unexpected token at '[NaN]'): JSON.parse('[NaN]') # Raises JSON::ParserError (232: unexpected token at '[Infinity]'): JSON.parse('[Infinity]') # Raises JSON::ParserError (248: unexpected token at '[-Infinity]'): JSON.parse('[-Infinity]')
Allow:
source = '[NaN, Infinity, -Infinity]' ruby = JSON.parse(source, {allow_nan: true}) ruby # => [NaN, Infinity, -Infinity]
Option symbolize_names
(boolean) specifies whether returned Hash keys should be Symbols; defaults to false
(use Strings).
With the default, false
:
source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}' ruby = JSON.parse(source) ruby # => {"a"=>"foo", "b"=>1.0, "c"=>true, "d"=>false, "e"=>nil}
Use Symbols:
ruby = JSON.parse(source, {symbolize_names: true}) ruby # => {:a=>"foo", :b=>1.0, :c=>true, :d=>false, :e=>nil}
Option object_class
(Class) specifies the Ruby class to be used for each JSON object; defaults to Hash.
With the default, Hash:
source = '{"a": "foo", "b": 1.0, "c": true, "d": false, "e": null}' ruby = JSON.parse(source) ruby.class # => Hash
Use class OpenStruct:
ruby = JSON.parse(source, {object_class: OpenStruct}) ruby # => #<OpenStruct a="foo", b=1.0, c=true, d=false, e=nil>
Option array_class
(Class) specifies the Ruby class to be used for each JSON array; defaults to Array.
With the default, Array:
source = '["foo", 1.0, true, false, null]' ruby = JSON.parse(source) ruby.class # => Array
Use class Set:
ruby = JSON.parse(source, {array_class: Set}) ruby # => #<Set: {"foo", 1.0, true, false, nil}>
Option create_additions
(boolean) specifies whether to use JSON additions in parsing. See JSON Additions.
To generate a Ruby String containing JSON data, use method JSON.generate(source, opts)
, where
source
is a Ruby object.
opts
is a Hash object containing options that control both input allowed and output formatting.
When the source is a Ruby Array, JSON.generate
returns a String containing a JSON array:
ruby = [0, 's', :foo] json = JSON.generate(ruby) json # => '[0,"s","foo"]'
The Ruby Array array may contain nested arrays, hashes, and scalars to any depth:
ruby = [0, [1, 2], {foo: 3, bar: 4}] json = JSON.generate(ruby) json # => '[0,[1,2],{"foo":3,"bar":4}]'
When the source is a Ruby Hash, JSON.generate
returns a String containing a JSON object:
ruby = {foo: 0, bar: 's', baz: :bat} json = JSON.generate(ruby) json # => '{"foo":0,"bar":"s","baz":"bat"}'
The Ruby Hash array may contain nested arrays, hashes, and scalars to any depth:
ruby = {foo: [0, 1], bar: {baz: 2, bat: 3}, bam: :bad} json = JSON.generate(ruby) json # => '{"foo":[0,1],"bar":{"baz":2,"bat":3},"bam":"bad"}'
When the source is neither an Array nor a Hash, the generated JSON data depends on the class of the source.
When the source is a Ruby Integer or Float, JSON.generate
returns a String containing a JSON number:
JSON.generate(42) # => '42' JSON.generate(0.42) # => '0.42'
When the source is a Ruby String, JSON.generate
returns a String containing a JSON string (with double-quotes):
JSON.generate('A string') # => '"A string"'
When the source is true
, false
or nil
, JSON.generate
returns a String containing the corresponding JSON token:
JSON.generate(true) # => 'true' JSON.generate(false) # => 'false' JSON.generate(nil) # => 'null'
When the source is none of the above, JSON.generate
returns a String containing a JSON string representation of the source:
JSON.generate(:foo) # => '"foo"' JSON.generate(Complex(0, 0)) # => '"0+0i"' JSON.generate(Dir.new('.')) # => '"#<Dir>"'
Option allow_nan
(boolean) specifies whether NaN
, Infinity
, and -Infinity
may be generated; defaults to false
.
With the default, false
:
# Raises JSON::GeneratorError (920: NaN not allowed in JSON): JSON.generate(JSON::NaN) # Raises JSON::GeneratorError (917: Infinity not allowed in JSON): JSON.generate(JSON::Infinity) # Raises JSON::GeneratorError (917: -Infinity not allowed in JSON): JSON.generate(JSON::MinusInfinity)
Allow:
ruby = [Float::NaN, Float::Infinity, Float::MinusInfinity] JSON.generate(ruby, allow_nan: true) # => '[NaN,Infinity,-Infinity]'
Option max_nesting
(Integer) specifies the maximum nesting depth in obj
; defaults to 100
.
With the default, 100
:
obj = [[[[[[0]]]]]] JSON.generate(obj) # => '[[[[[[0]]]]]]'
Too deep:
# Raises JSON::NestingError (nesting of 2 is too deep): JSON.generate(obj, max_nesting: 2)
The default formatting options generate the most compact JSON data, all on one line and with no whitespace.
You can use these formatting options to generate JSON data in a more open format, using whitespace. See also JSON.pretty_generate
.
Option array_nl
(String) specifies a string (usually a newline) to be inserted after each JSON array; defaults to the empty String, ''
.
Option object_nl
(String) specifies a string (usually a newline) to be inserted after each JSON object; defaults to the empty String, ''
.
Option indent
(String) specifies the string (usually spaces) to be used for indentation; defaults to the empty String, ''
; defaults to the empty String, ''
; has no effect unless options array_nl
or object_nl
specify newlines.
Option space
(String) specifies a string (usually a space) to be inserted after the colon in each JSON object’s pair; defaults to the empty String, ''
.
Option space_before
(String) specifies a string (usually a space) to be inserted before the colon in each JSON object’s pair; defaults to the empty String, ''
.
In this example, obj
is used first to generate the shortest JSON data (no whitespace), then again with all formatting options specified:
obj = {foo: [:bar, :baz], bat: {bam: 0, bad: 1}} json = JSON.generate(obj) puts 'Compact:', json opts = { array_nl: "\n", object_nl: "\n", indent: ' ', space_before: ' ', space: ' ' } puts 'Open:', JSON.generate(obj, opts)
Output:
Compact: {"foo":["bar","baz"],"bat":{"bam":0,"bad":1}} Open: { "foo" : [ "bar", "baz" ], "bat" : { "bam" : 0, "bad" : 1 } }
When you “round trip” a non-String object from Ruby to JSON and back, you have a new String, instead of the object you began with:
ruby0 = Range.new(0, 2) json = JSON.generate(ruby0) json # => '0..2"' ruby1 = JSON.parse(json) ruby1 # => '0..2' ruby1.class # => String
You can use JSON additions to preserve the original object. The addition is an extension of a ruby class, so that:
JSON.generate stores more information in the JSON string.
JSON.parse, called with option create_additions
, uses that information to create a proper Ruby object.
This example shows a Range being generated into JSON and parsed back into Ruby, both without and with the addition for Range:
ruby = Range.new(0, 2) # This passage does not use the addition for Range. json0 = JSON.generate(ruby) ruby0 = JSON.parse(json0) # This passage uses the addition for Range. require 'json/add/range' json1 = JSON.generate(ruby) ruby1 = JSON.parse(json1, create_additions: true) # Make a nice display. display = <<EOT Generated JSON: Without addition: #{json0} (#{json0.class}) With addition: #{json1} (#{json1.class}) Parsed JSON: Without addition: #{ruby0.inspect} (#{ruby0.class}) With addition: #{ruby1.inspect} (#{ruby1.class}) EOT puts display
This output shows the different results:
Generated JSON: Without addition: "0..2" (String) With addition: {"json_class":"Range","a":[0,2,false]} (String) Parsed JSON: Without addition: "0..2" (String) With addition: 0..2 (Range)
The JSON module includes additions for certain classes. You can also craft custom additions. See Custom JSON Additions.
The JSON module includes additions for certain classes. To use an addition, require
its source:
BigDecimal: require 'json/add/bigdecimal'
Complex: require 'json/add/complex'
Date: require 'json/add/date'
DateTime: require 'json/add/date_time'
Exception: require 'json/add/exception'
OpenStruct: require 'json/add/ostruct'
Range: require 'json/add/range'
Rational: require 'json/add/rational'
Regexp: require 'json/add/regexp'
Set: require 'json/add/set'
Struct: require 'json/add/struct'
Symbol: require 'json/add/symbol'
Time: require 'json/add/time'
To reduce punctuation clutter, the examples below show the generated JSON via puts
, rather than the usual inspect
,
BigDecimal:
require 'json/add/bigdecimal' ruby0 = BigDecimal(0) # 0.0 json = JSON.generate(ruby0) # {"json_class":"BigDecimal","b":"27:0.0"} ruby1 = JSON.parse(json, create_additions: true) # 0.0 ruby1.class # => BigDecimal
Complex:
require 'json/add/complex' ruby0 = Complex(1+0i) # 1+0i json = JSON.generate(ruby0) # {"json_class":"Complex","r":1,"i":0} ruby1 = JSON.parse(json, create_additions: true) # 1+0i ruby1.class # Complex
Date:
require 'json/add/date' ruby0 = Date.today # 2020-05-02 json = JSON.generate(ruby0) # {"json_class":"Date","y":2020,"m":5,"d":2,"sg":2299161.0} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02 ruby1.class # Date
DateTime:
require 'json/add/date_time' ruby0 = DateTime.now # 2020-05-02T10:38:13-05:00 json = JSON.generate(ruby0) # {"json_class":"DateTime","y":2020,"m":5,"d":2,"H":10,"M":38,"S":13,"of":"-5/24","sg":2299161.0} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02T10:38:13-05:00 ruby1.class # DateTime
Exception (and its subclasses including RuntimeError):
require 'json/add/exception' ruby0 = Exception.new('A message') # A message json = JSON.generate(ruby0) # {"json_class":"Exception","m":"A message","b":null} ruby1 = JSON.parse(json, create_additions: true) # A message ruby1.class # Exception ruby0 = RuntimeError.new('Another message') # Another message json = JSON.generate(ruby0) # {"json_class":"RuntimeError","m":"Another message","b":null} ruby1 = JSON.parse(json, create_additions: true) # Another message ruby1.class # RuntimeError
OpenStruct:
require 'json/add/ostruct' ruby0 = OpenStruct.new(name: 'Matz', language: 'Ruby') # #<OpenStruct name="Matz", language="Ruby"> json = JSON.generate(ruby0) # {"json_class":"OpenStruct","t":{"name":"Matz","language":"Ruby"}} ruby1 = JSON.parse(json, create_additions: true) # #<OpenStruct name="Matz", language="Ruby"> ruby1.class # OpenStruct
Range:
require 'json/add/range' ruby0 = Range.new(0, 2) # 0..2 json = JSON.generate(ruby0) # {"json_class":"Range","a":[0,2,false]} ruby1 = JSON.parse(json, create_additions: true) # 0..2 ruby1.class # Range
Rational:
require 'json/add/rational' ruby0 = Rational(1, 3) # 1/3 json = JSON.generate(ruby0) # {"json_class":"Rational","n":1,"d":3} ruby1 = JSON.parse(json, create_additions: true) # 1/3 ruby1.class # Rational
Regexp:
require 'json/add/regexp' ruby0 = Regexp.new('foo') # (?-mix:foo) json = JSON.generate(ruby0) # {"json_class":"Regexp","o":0,"s":"foo"} ruby1 = JSON.parse(json, create_additions: true) # (?-mix:foo) ruby1.class # Regexp
Set:
require 'json/add/set' ruby0 = Set.new([0, 1, 2]) # #<Set: {0, 1, 2}> json = JSON.generate(ruby0) # {"json_class":"Set","a":[0,1,2]} ruby1 = JSON.parse(json, create_additions: true) # #<Set: {0, 1, 2}> ruby1.class # Set
Struct:
require 'json/add/struct' Customer = Struct.new(:name, :address) # Customer ruby0 = Customer.new("Dave", "123 Main") # #<struct Customer name="Dave", address="123 Main"> json = JSON.generate(ruby0) # {"json_class":"Customer","v":["Dave","123 Main"]} ruby1 = JSON.parse(json, create_additions: true) # #<struct Customer name="Dave", address="123 Main"> ruby1.class # Customer
Symbol:
require 'json/add/symbol' ruby0 = :foo # foo json = JSON.generate(ruby0) # {"json_class":"Symbol","s":"foo"} ruby1 = JSON.parse(json, create_additions: true) # foo ruby1.class # Symbol
Time:
require 'json/add/time' ruby0 = Time.now # 2020-05-02 11:28:26 -0500 json = JSON.generate(ruby0) # {"json_class":"Time","s":1588436906,"n":840560000} ruby1 = JSON.parse(json, create_additions: true) # 2020-05-02 11:28:26 -0500 ruby1.class # Time
In addition to the JSON additions provided, you can craft JSON additions of your own, either for Ruby built-in classes or for user-defined classes.
Here’s a user-defined class Foo
:
class Foo attr_accessor :bar, :baz def initialize(bar, baz) self.bar = bar self.baz = baz end end
Here’s the JSON addition for it:
# Extend class Foo with JSON addition. class Foo # Serialize Foo object with its class name and arguments def to_json(*args) { JSON.create_id => self.class.name, 'a' => [ bar, baz ] }.to_json(*args) end # Deserialize JSON string by constructing new Foo object with arguments. def self.json_create(object) new(*object['a']) end end
Demonstration:
require 'json' # This Foo object has no custom addition. foo0 = Foo.new(0, 1) json0 = JSON.generate(foo0) obj0 = JSON.parse(json0) # Lood the custom addition. require_relative 'foo_addition' # This foo has the custom addition. foo1 = Foo.new(0, 1) json1 = JSON.generate(foo1) obj1 = JSON.parse(json1, create_additions: true) # Make a nice display. display = <<EOT Generated JSON: Without custom addition: #{json0} (#{json0.class}) With custom addition: #{json1} (#{json1.class}) Parsed JSON: Without custom addition: #{obj0.inspect} (#{obj0.class}) With custom addition: #{obj1.inspect} (#{obj1.class}) EOT puts display
Output:
Generated JSON: Without custom addition: "#<Foo:0x0000000006534e80>" (String) With custom addition: {"json_class":"Foo","a":[0,1]} (String) Parsed JSON: Without custom addition: "#<Foo:0x0000000006534e80>" (String) With custom addition: #<Foo:0x0000000006473bb8 @bar=0, @baz=1> (Foo)
Kanji Converter for Ruby.
The objspace library extends the ObjectSpace
module and adds several methods to get internal statistic information about object/memory management.
You need to require 'objspace'
to use this extension module.
Generally, you *SHOULD NOT* use this library if you do not know about the MRI implementation. Mainly, this library is for (memory) profiler developers and MRI developers who need to know about MRI memory usage.
The ObjectSpace
module contains a number of routines that interact with the garbage collection facility and allow you to traverse all living objects with an iterator.
ObjectSpace
also provides support for object finalizers, procs that will be called when a specific object is about to be destroyed by garbage collection. See the documentation for ObjectSpace.define_finalizer
for important information on how to use this method correctly.
a = "A" b = "B" ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) a = nil b = nil
produces:
Finalizer two on 537763470 Finalizer one on 537763480
The Benchmark
module provides methods to measure and report the time used to execute Ruby code.
Measure the time to construct the string given by the expression "a"*1_000_000_000
:
require 'benchmark' puts Benchmark.measure { "a"*1_000_000_000 }
On my machine (OSX 10.8.3 on i5 1.7 GHz) this generates:
0.350000 0.400000 0.750000 ( 0.835234)
This report shows the user CPU time, system CPU time, the sum of the user and system CPU times, and the elapsed real time. The unit of time is seconds.
Do some experiments sequentially using the bm
method:
require 'benchmark' n = 5000000 Benchmark.bm do |x| x.report { for i in 1..n; a = "1"; end } x.report { n.times do ; a = "1"; end } x.report { 1.upto(n) do ; a = "1"; end } end
The result:
user system total real 1.010000 0.000000 1.010000 ( 1.014479) 1.000000 0.000000 1.000000 ( 0.998261) 0.980000 0.000000 0.980000 ( 0.981335)
Continuing the previous example, put a label in each report:
require 'benchmark' n = 5000000 Benchmark.bm(7) do |x| x.report("for:") { for i in 1..n; a = "1"; end } x.report("times:") { n.times do ; a = "1"; end } x.report("upto:") { 1.upto(n) do ; a = "1"; end } end
The result:
user system total real for: 1.010000 0.000000 1.010000 ( 1.015688) times: 1.000000 0.000000 1.000000 ( 1.003611) upto: 1.030000 0.000000 1.030000 ( 1.028098)
The times for some benchmarks depend on the order in which items are run. These differences are due to the cost of memory allocation and garbage collection. To avoid these discrepancies, the bmbm
method is provided. For example, to compare ways to sort an array of floats:
require 'benchmark' array = (1..1000000).map { rand } Benchmark.bmbm do |x| x.report("sort!") { array.dup.sort! } x.report("sort") { array.dup.sort } end
The result:
Rehearsal ----------------------------------------- sort! 1.490000 0.010000 1.500000 ( 1.490520) sort 1.460000 0.000000 1.460000 ( 1.463025) -------------------------------- total: 2.960000sec user system total real sort! 1.460000 0.000000 1.460000 ( 1.460465) sort 1.450000 0.010000 1.460000 ( 1.448327)
Report statistics of sequential experiments with unique labels, using the benchmark
method:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
The result:
user system total real for: 0.950000 0.000000 0.950000 ( 0.952039) times: 0.980000 0.000000 0.980000 ( 0.984938) upto: 0.950000 0.000000 0.950000 ( 0.946787) >total: 2.880000 0.000000 2.880000 ( 2.883764) >avg: 0.960000 0.000000 0.960000 ( 0.961255)
Timeout
long-running blocks
require 'timeout' status = Timeout::timeout(5) { # Something that should be interrupted if it takes more than 5 seconds... }
Timeout
provides a way to auto-terminate a potentially long-running operation if it hasn’t finished in a fixed amount of time.
Previous versions didn’t use a module for namespacing, however timeout
is provided for backwards compatibility. You should prefer Timeout.timeout
instead.
© 2000 Network Applied Communication Laboratory, Inc.
© 2000 Information-technology Promotion Agency, Japan
Specifies a Specification object that should be activated. Also contains a dependency that was used to introduce this activation.
The parent class for all constructed encodings. The value attribute of a Constructive
is always an Array
. Attributes are the same as for ASN1Data
, with the addition of tagging.
Most constructed encodings come in the form of a SET or a SEQUENCE. These encodings are represented by one of the two sub-classes of Constructive:
OpenSSL::ASN1::Sequence
Please note that tagged sequences and sets are still parsed as instances of ASN1Data
. Find
further details on tagged values there.
int = OpenSSL::ASN1::Integer.new(1) str = OpenSSL::ASN1::PrintableString.new('abc') sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] )
int = OpenSSL::ASN1::Integer.new(1) str = OpenSSL::ASN1::PrintableString.new('abc') set = OpenSSL::ASN1::Set.new( [ int, str ] )
Class for representing HTTP method OPTIONS:
require 'net/http' uri = URI('http://example.com') hostname = uri.hostname # => "example.com" req = Net::HTTP::Options.new(uri) # => #<Net::HTTP::Options OPTIONS> res = Net::HTTP.start(hostname) do |http| http.request(req) end
Properties:
Request body: optional.
Response body: yes.
Safe: yes.
Idempotent: yes.
Cacheable: no.
Related:
Net::HTTP#options
: sends OPTIONS
request, returns response object.
Switch
that can omit argument.