Results for: "partition"

Yields all attributes (as symbols) along with the corresponding values or returns an enumerator if no block is given.

require "ostruct"
data = OpenStruct.new("country" => "Australia", :capital => "Canberra")
data.each_pair.to_a   # => [[:country, "Australia"], [:capital, "Canberra"]]

Deserializes JSON string by constructing new Range object with arguments a serialized by to_json.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Range) with JSON array of arguments a which include first (integer), last (integer), and exclude_end? (boolean) as JSON string.

Deserializes JSON string by constructing new Regexp object with source s (Regexp or String) and options o serialized by to_json

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Regexp) with options o and source s (Regexp or String) as JSON string

Import a JSON Marshalled object.

method used for JSON marshalling support.

Marshal the object to JSON.

method used for JSON marshalling support.

return the JSON value

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Symbol) with String representation of Symbol as a JSON string.

Deserializes JSON string by converting the string value stored in the object to a Symbol

Returns true if sym ends with one of the suffixes given.

:hello.end_with?("ello")               #=> true

# returns true if one of the +suffixes+ matches.
:hello.end_with?("heaven", "ello")     #=> true
:hello.end_with?("heaven", "paradise") #=> false

Returns true if this class can be used to create an instance from a serialised JSON string. The class has to implement a class method json_create that expects a hash as first parameter. The hash should include the required data.

No documentation available
No documentation available
No documentation available
No documentation available

Return the path as a String.

to_path is implemented so Pathname objects are usable with File.open, etc.

See FileTest.world_writable?.

See FileTest.writable_real?.

Receives up to maxlen bytes from socket using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_ options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.

When recvfrom(2) returns 0, Socket#recvfrom_nonblock returns an empty string as data. The meaning depends on the socket: EOF on TCP, empty packet on UDP, etc.

Parameters

Example

# In one file, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
client, client_addrinfo = socket.accept
begin # emulate blocking recvfrom
  pair = client.recvfrom_nonblock(20)
rescue IO::WaitReadable
  IO.select([client])
  retry
end
data = pair[0].chomp
puts "I only received 20 bytes '#{data}'"
sleep 1
socket.close

# In another file, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Watch this get cut short!"
socket.close

Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.

Socket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.

By specifying a keyword argument exception to false, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo, client_addrinfo.

Example

# In one script, start this first
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.bind(sockaddr)
socket.listen(5)
begin # emulate blocking accept
  client_socket, client_addrinfo = socket.accept_nonblock
rescue IO::WaitReadable, Errno::EINTR
  IO.select([socket])
  retry
end
puts "The client said, '#{client_socket.readline.chomp}'"
client_socket.puts "Hello from script one!"
socket.close

# In another script, start this second
require 'socket'
include Socket::Constants
socket = Socket.new(AF_INET, SOCK_STREAM, 0)
sockaddr = Socket.sockaddr_in(2200, 'localhost')
socket.connect(sockaddr)
socket.puts "Hello from script 2."
puts "The server said, '#{socket.readline.chomp}'"
socket.close

Refer to Socket#accept for the exceptions that may be thrown if the call to accept_nonblock fails.

Socket#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.

If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.

By specifying a keyword argument exception to false, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable instead.

See

Disallows further write using shutdown system call.

UNIXSocket.pair {|s1, s2|
  s1.print "ping"
  s1.close_write
  p s2.read        #=> "ping"
  s2.print "pong"
  s2.close
  p s1.read        #=> "pong"
}
Search took: 2ms  ·  Total Results: 2583