Results for: "module_function"

Reads from the IO until the given pattern matches or the timeout is over.

It returns an array with the read buffer, followed by the matches. If a block is given, the result is yielded to the block and returns nil.

When called without a block, it waits until the input that matches the given pattern is obtained from the IO or the time specified as the timeout passes. An array is returned when the pattern is obtained from the IO. The first element of the array is the entire string obtained from the IO until the pattern matches, followed by elements indicating which the pattern which matched to the anchor in the regular expression.

The optional timeout parameter defines, in seconds, the total time to wait for the pattern. If the timeout expires or eof is found, nil is returned or yielded. However, the buffer in a timeout session is kept for the next expect call. The default timeout is 9999999 seconds.

Immediately writes to disk all data buffered in the stream, via the operating system’s fsync(2).

Note this difference:

Raises an exception if the operating system does not support fsync(2).

Immediately writes to disk all data buffered in the stream, via the operating system’s: fdatasync(2), if supported, otherwise via fsync(2), if supported; otherwise raises an exception.

Returns the current sync mode of the stream. When sync mode is true, all output is immediately flushed to the underlying operating system and is not buffered by Ruby internally. See also fsync.

f = File.open('t.tmp', 'w')
f.sync # => false
f.sync = true
f.sync # => true

Sets the sync mode for the stream to the given value; returns the given value.

Values for the sync mode:

Example;

f = File.open('t.tmp', 'w')
f.sync # => false
f.sync = true
f.sync # => true

Related: IO#fsync.

Reads up to maxlen bytes from the stream; returns a string (either a new string or the given out_string). Its encoding is:

With the single non-negative integer argument maxlen given, returns a new string:

f = File.new('t.txt')
f.readpartial(30) # => "This is line one.\nThis is the"
f.readpartial(30) # => " second line.\nThis is the thi"
f.readpartial(30) # => "rd line.\n"
f.eof             # => true
f.readpartial(30) # Raises EOFError.

With both argument maxlen and string argument out_string given, returns modified out_string:

f = File.new('t.txt')
s = 'foo'
f.readpartial(30, s) # => "This is line one.\nThis is the"
s = 'bar'
f.readpartial(0, s)  # => ""

This method is useful for a stream such as a pipe, a socket, or a tty. It blocks only when no data is immediately available. This means that it blocks only when all of the following are true:

When blocked, the method waits for either more data or EOF on the stream:

When not blocked, the method responds immediately:

Note that this method is similar to sysread. The differences are:

The latter means that readpartial is non-blocking-flag insensitive. It blocks on the situation IO#sysread causes Errno::EWOULDBLOCK as if the fd is blocking mode.

Examples:

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << 'abc'               #               ""                "abc".
r.readpartial(4096)      # => "abc"      ""                ""
r.readpartial(4096)      # (Blocks because buffer and pipe are empty.)

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << 'abc'               #               ""                "abc"
w.close                  #               ""                "abc" EOF
r.readpartial(4096)      # => "abc"      ""                 EOF
r.readpartial(4096)      # raises EOFError

#                        # Returned      Buffer Content    Pipe Content
r, w = IO.pipe           #
w << "abc\ndef\n"        #               ""                "abc\ndef\n"
r.gets                   # => "abc\n"    "def\n"           ""
w << "ghi\n"             #               "def\n"           "ghi\n"
r.readpartial(4096)      # => "def\n"    ""                "ghi\n"
r.readpartial(4096)      # => "ghi\n"    ""                ""

Pushes back bytes (passed as a parameter) onto ios, such that a subsequent buffered read will return it. It is only guaranteed to support a single byte, and only if ungetbyte or ungetc has not already been called on ios since the previous read of at least a single byte from ios. However, it can support additional bytes if there is space in the internal buffer to allow for it.

f = File.new("testfile")   #=> #<File:testfile>
b = f.getbyte              #=> 0x38
f.ungetbyte(b)             #=> nil
f.getbyte                  #=> 0x38

If given an integer, only uses the lower 8 bits of the integer as the byte to push.

f = File.new("testfile")   #=> #<File:testfile>
f.ungetbyte(0x102)         #=> nil
f.getbyte                  #=> 0x2

Calling this method prepends to the existing buffer, even if the method has already been called previously:

f = File.new("testfile")   #=> #<File:testfile>
f.ungetbyte("ab")          #=> nil
f.ungetbyte("cd")          #=> nil
f.read(5)                  #=> "cdab8"

Has no effect with unbuffered reads (such as IO#sysread).

Pushes back characters (passed as a parameter) onto ios, such that a subsequent buffered read will return it. It is only guaranteed to support a single byte, and only if ungetbyte or ungetc has not already been called on ios since the previous read of at least a single byte from ios. However, it can support additional bytes if there is space in the internal buffer to allow for it.

f = File.new("testfile")   #=> #<File:testfile>
c = f.getc                 #=> "8"
f.ungetc(c)                #=> nil
f.getc                     #=> "8"

If given an integer, the integer must represent a valid codepoint in the external encoding of ios.

Calling this method prepends to the existing buffer, even if the method has already been called previously:

f = File.new("testfile")   #=> #<File:testfile>
f.ungetc("ab")             #=> nil
f.ungetc("cd")             #=> nil
f.read(5)                  #=> "cdab8"

Has no effect with unbuffered reads (such as IO#sysread).

Returns a string representation of self:

f = File.open('t.txt')
f.inspect # => "#<File:t.txt>"

Returns a string containing a detailed summary of the keys and values.

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#to_s.

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)        # => true
(1..4).include?(5)        # => false
(1..4).include?(4)        # => true
(1...4).include?(4)       # => false
('a'..'d').include?('b')  # => true
('a'..'d').include?('e')  # => false
('a'..'d').include?('B')  # => false
('a'..'d').include?('d')  # => true
('a'...'d').include?('d') # => false

If begin and end are numeric, include? behaves like cover?

(1..3).include?(1.5) # => true
(1..3).cover?(1.5) # => true

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') # => false
('a'..'d').cover?('cc')   # => true

Related: Range#cover?.

Range#member? is an alias for Range#include?.

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: Range#size.

Produce a nicely formatted string-version of rxp. Perhaps surprisingly, #inspect actually produces the more natural version of the string than #to_s.

/ab+c/ix.inspect        #=> "/ab+c/ix"

Returns true if the set contains the given object.

Note that include? and member? do not test member equality using == as do other Enumerables.

See also Enumerable#include?

Returns true if the set and the given enumerable have at least one element in common.

Set[1, 2, 3].intersect? Set[4, 5]   #=> false
Set[1, 2, 3].intersect? Set[3, 4]   #=> true
Set[1, 2, 3].intersect? 4..5        #=> false
Set[1, 2, 3].intersect? [3, 4]      #=> true

Equivalent to Set#delete_if, but returns nil if no changes were made. Returns an enumerator if no block is given.

Deletes every element that appears in the given enumerable object and returns self.

No documentation available

Returns a string containing a human-readable representation of the set (“#<Set: {element1, element2, …}>”).

Returns the representation of sym as a symbol literal.

:fred.inspect   #=> ":fred"

Equivalent to sym.to_s.downcase.to_sym.

See String#downcase.

Related: Symbol#upcase.

The opposite of Pathname#absolute?

It returns false if the pathname begins with a slash.

p = Pathname.new('/im/sure')
p.relative?
    #=> false

p = Pathname.new('not/so/sure')
p.relative?
    #=> true

Returns pathname. This method is deprecated and will be removed in Ruby 3.2.

Returns the last access time for the file.

See File.atime.

Search took: 7ms  ·  Total Results: 3178