Results for: "remove_const"

Formats time according to the directives in the given format string.

The directives begin with a percent (%) character. Any text not listed as a directive will be passed through to the output string.

The directive consists of a percent (%) character, zero or more flags, optional minimum field width, optional modifier and a conversion specifier as follows:

%<flags><width><modifier><conversion>

Flags:

-  don't pad a numerical output
_  use spaces for padding
0  use zeros for padding
^  upcase the result string
#  change case
:  use colons for %z

The minimum field width specifies the minimum width.

The modifiers are “E” and “O”. They are ignored.

Format directives:

Date (Year, Month, Day):
  %Y - Year with century if provided, will pad result at least 4 digits.
          -0001, 0000, 1995, 2009, 14292, etc.
  %C - year / 100 (rounded down such as 20 in 2009)
  %y - year % 100 (00..99)

  %m - Month of the year, zero-padded (01..12)
          %_m  blank-padded ( 1..12)
          %-m  no-padded (1..12)
  %B - The full month name (``January'')
          %^B  uppercased (``JANUARY'')
  %b - The abbreviated month name (``Jan'')
          %^b  uppercased (``JAN'')
  %h - Equivalent to %b

  %d - Day of the month, zero-padded (01..31)
          %-d  no-padded (1..31)
  %e - Day of the month, blank-padded ( 1..31)

  %j - Day of the year (001..366)

Time (Hour, Minute, Second, Subsecond):
  %H - Hour of the day, 24-hour clock, zero-padded (00..23)
  %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
  %I - Hour of the day, 12-hour clock, zero-padded (01..12)
  %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
  %P - Meridian indicator, lowercase (``am'' or ``pm'')
  %p - Meridian indicator, uppercase (``AM'' or ``PM'')

  %M - Minute of the hour (00..59)

  %S - Second of the minute (00..60)

  %L - Millisecond of the second (000..999)
       The digits under millisecond are truncated to not produce 1000.
  %N - Fractional seconds digits, default is 9 digits (nanosecond)
          %3N  millisecond (3 digits)
          %6N  microsecond (6 digits)
          %9N  nanosecond (9 digits)
          %12N picosecond (12 digits)
          %15N femtosecond (15 digits)
          %18N attosecond (18 digits)
          %21N zeptosecond (21 digits)
          %24N yoctosecond (24 digits)
       The digits under the specified length are truncated to avoid
       carry up.

Time zone:
  %z - Time zone as hour and minute offset from UTC (e.g. +0900)
          %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
          %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
  %Z - Abbreviated time zone name or similar information.  (OS dependent)

Weekday:
  %A - The full weekday name (``Sunday'')
          %^A  uppercased (``SUNDAY'')
  %a - The abbreviated name (``Sun'')
          %^a  uppercased (``SUN'')
  %u - Day of the week (Monday is 1, 1..7)
  %w - Day of the week (Sunday is 0, 0..6)

ISO 8601 week-based year and week number:
The first week of YYYY starts with a Monday and includes YYYY-01-04.
The days in the year before the first week are in the last week of
the previous year.
  %G - The week-based year
  %g - The last 2 digits of the week-based year (00..99)
  %V - Week number of the week-based year (01..53)

Week number:
The first week of YYYY that starts with a Sunday or Monday (according to %U
or %W). The days in the year before the first week are in week 0.
  %U - Week number of the year. The week starts with Sunday. (00..53)
  %W - Week number of the year. The week starts with Monday. (00..53)

Seconds since the Epoch:
  %s - Number of seconds since 1970-01-01 00:00:00 UTC.

Literal string:
  %n - Newline character (\n)
  %t - Tab character (\t)
  %% - Literal ``%'' character

Combination:
  %c - date and time (%a %b %e %T %Y)
  %D - Date (%m/%d/%y)
  %F - The ISO 8601 date format (%Y-%m-%d)
  %v - VMS date (%e-%^b-%4Y)
  %x - Same as %D
  %X - Same as %T
  %r - 12-hour time (%I:%M:%S %p)
  %R - 24-hour time (%H:%M)
  %T - 24-hour time (%H:%M:%S)

This method is similar to strftime() function defined in ISO C and POSIX.

While all directives are locale independent since Ruby 1.9, %Z is platform dependent. So, the result may differ even if the same format string is used in other systems such as C.

%z is recommended over %Z. %Z doesn’t identify the timezone. For example, “CST” is used at America/Chicago (-06:00), America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30) and Australia/Adelaide (+10:30). Also, %Z is highly dependent on the operating system. For example, it may generate a non ASCII string on Japanese Windows, i.e. the result can be different to “JST”. So the numeric time zone offset, %z, is recommended.

Examples:

t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600
t.strftime("Printed on %m/%d/%Y")         #=> "Printed on 11/19/2007"
t.strftime("at %I:%M %p")                 #=> "at 08:37 AM"

Various ISO 8601 formats:

%Y%m%d           => 20071119                  Calendar date (basic)
%F               => 2007-11-19                Calendar date (extended)
%Y-%m            => 2007-11                   Calendar date, reduced accuracy, specific month
%Y               => 2007                      Calendar date, reduced accuracy, specific year
%C               => 20                        Calendar date, reduced accuracy, specific century
%Y%j             => 2007323                   Ordinal date (basic)
%Y-%j            => 2007-323                  Ordinal date (extended)
%GW%V%u          => 2007W471                  Week date (basic)
%G-W%V-%u        => 2007-W47-1                Week date (extended)
%GW%V            => 2007W47                   Week date, reduced accuracy, specific week (basic)
%G-W%V           => 2007-W47                  Week date, reduced accuracy, specific week (extended)
%H%M%S           => 083748                    Local time (basic)
%T               => 08:37:48                  Local time (extended)
%H%M             => 0837                      Local time, reduced accuracy, specific minute (basic)
%H:%M            => 08:37                     Local time, reduced accuracy, specific minute (extended)
%H               => 08                        Local time, reduced accuracy, specific hour
%H%M%S,%L        => 083748,000                Local time with decimal fraction, comma as decimal sign (basic)
%T,%L            => 08:37:48,000              Local time with decimal fraction, comma as decimal sign (extended)
%H%M%S.%L        => 083748.000                Local time with decimal fraction, full stop as decimal sign (basic)
%T.%L            => 08:37:48.000              Local time with decimal fraction, full stop as decimal sign (extended)
%H%M%S%z         => 083748-0600               Local time and the difference from UTC (basic)
%T%:z            => 08:37:48-06:00            Local time and the difference from UTC (extended)
%Y%m%dT%H%M%S%z  => 20071119T083748-0600      Date and time of day for calendar date (basic)
%FT%T%:z         => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
%Y%jT%H%M%S%z    => 2007323T083748-0600       Date and time of day for ordinal date (basic)
%Y-%jT%T%:z      => 2007-323T08:37:48-06:00   Date and time of day for ordinal date (extended)
%GW%V%uT%H%M%S%z => 2007W471T083748-0600      Date and time of day for week date (basic)
%G-W%V-%uT%T%:z  => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
%Y%m%dT%H%M      => 20071119T0837             Calendar date and local time (basic)
%FT%R            => 2007-11-19T08:37          Calendar date and local time (extended)
%Y%jT%H%MZ       => 2007323T0837Z             Ordinal date and UTC of day (basic)
%Y-%jT%RZ        => 2007-323T08:37Z           Ordinal date and UTC of day (extended)
%GW%V%uT%H%M%z   => 2007W471T0837-0600        Week date and local time and difference from UTC (basic)
%G-W%V-%uT%R%:z  => 2007-W47-1T08:37-06:00    Week date and local time and difference from UTC (extended)

Returns a string representation of self:

Customer = Struct.new(:name, :address, :zip) # => Customer
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.inspect # => "#<struct Customer name=\"Joe Smith\", address=\"123 Maple, Anytown NC\", zip=12345>"

Struct#to_s is an alias for Struct#inspect.

Yields self within cooked mode.

STDIN.cooked(&:gets)

will read and return a line with echo back and line editing.

You must require ‘io/console’ to use this method.

Enables cooked mode.

If the terminal mode needs to be back, use io.cooked { … }.

You must require ‘io/console’ to use this method.

Returns console size.

You must require ‘io/console’ to use this method.

Tries to set console size. The effect depends on the platform and the running environment.

You must require ‘io/console’ to use this method.

Returns true if an IO object is in non-blocking mode.

Enables non-blocking mode on a stream when set to true, and blocking mode when set to false.

Yields self in non-blocking mode.

When false is given as an argument, self is yielded in blocking mode. The original mode is restored after the block is executed.

Returns status information for ios as an object of type File::Stat.

f = File.new("testfile")
s = f.stat
"%o" % s.mode   #=> "100644"
s.blksize       #=> 4096
s.atime         #=> Wed Apr 09 08:53:54 CDT 2003

Returns a string representation of self:

f = File.open('t.txt')
f.inspect # => "#<File:t.txt>"

Returns a string containing a detailed summary of the keys and values.

Iterates over the elements of self.

With a block given and no argument, calls the block each element of the range; returns self:

a = []
(1..5).step {|element| a.push(element) } # => 1..5
a # => [1, 2, 3, 4, 5]
a = []
('a'..'e').step {|element| a.push(element) } # => "a".."e"
a # => ["a", "b", "c", "d", "e"]

With a block given and a positive integer argument n given, calls the block with element 0, element n, element 2n, and so on:

a = []
(1..5).step(2) {|element| a.push(element) } # => 1..5
a # => [1, 3, 5]
a = []
('a'..'e').step(2) {|element| a.push(element) } # => "a".."e"
a # => ["a", "c", "e"]

With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence if self is numeric; otherwise of class Enumerator:

e = (1..5).step(2) # => ((1..5).step(2))
e.class            # => Enumerator::ArithmeticSequence
('a'..'e').step # => #<Enumerator: ...>

Related: Range#%.

With no argument, returns the first element of self, if it exists:

(1..4).first     # => 1
('a'..'d').first # => "a"

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) # => [1, 2, 3]
(1..10).first(0) # => []
(1..4).first(50) # => [1, 2, 3, 4]

Raises an exception if there is no first element:

(..4).first # Raises RangeError

With no argument, returns the last element of self, if it exists:

(1..4).last     # => 4
('a'..'d').last # => "d"

Note that last with no argument returns the end element of self even if exclude_end? is true:

(1...4).last     # => 4
('a'...'d').last # => "d"

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) # => [8, 9, 10]
(1..10).last(0) # => []
(1..4).last(50) # => [1, 2, 3, 4]

Note that last with argument does not return the end element of self if exclude_end? it true:

(1...4).last(3)     # => [1, 2, 3]
('a'...'d').last(3) # => ["a", "b", "c"]

Raises an exception if there is no last element:

(1..).last # Raises RangeError

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect  # => "1..4"
(1...4).inspect # => "1...4"
(1..).inspect   # => "1.."
(..4).inspect   # => "..4"

Note that returns from to_s and inspect may differ:

('a'..'d').to_s    # => "a..d"
('a'..'d').inspect # => "\"a\"..\"d\""

Related: Range#to_s.

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count      # => 4
(1...4).count     # => 3
('a'..'d').count  # => 4
('a'...'d').count # => 3
(1..).count       # => Infinity
(..4).count       # => Infinity

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)   # => 1
(1..4).count(5)   # => 0
(1..4).count('a')  # => 0

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 } # => 2

Related: Range#size.

Alias for Regexp.new

Return a Regexp object that is the union of the given patterns, i.e., will match any of its parts. The patterns can be Regexp objects, in which case their options will be preserved, or Strings. If no patterns are given, returns /(?!)/. The behavior is unspecified if any given pattern contains capture.

Regexp.union                         #=> /(?!)/
Regexp.union("penzance")             #=> /penzance/
Regexp.union("a+b*c")                #=> /a\+b\*c/
Regexp.union("skiing", "sledding")   #=> /skiing|sledding/
Regexp.union(["skiing", "sledding"]) #=> /skiing|sledding/
Regexp.union(/dogs/, /cats/i)        #=> /(?-mix:dogs)|(?i-mx:cats)/

Note: the arguments for ::union will try to be converted into a regular expression literal via to_regexp.

Produce a nicely formatted string-version of rxp. Perhaps surprisingly, #inspect actually produces the more natural version of the string than #to_s.

/ab+c/ix.inspect        #=> "/ab+c/ix"

Returns the Encoding object that represents the encoding of obj.

Replaces the elements with ones returned by collect(). Returns an enumerator if no block is given.

No documentation available
No documentation available

Returns a string containing a human-readable representation of the set (“#<Set: {element1, element2, …}>”).

Search took: 3ms  ·  Total Results: 3470