Returns self.
Returns a DateTime
object which denotes self.
Waits until IO
is writable and returns true
or false
when times out.
Attempts to convert object
into an IO object via method to_io
; returns the new IO object if successful, or nil
otherwise:
IO.try_convert(STDOUT) # => #<IO:<STDOUT>> IO.try_convert(ARGF) # => #<IO:<STDIN>> IO.try_convert('STDOUT') # => nil
Writes the given string to ios using the write(2) system call after O_NONBLOCK is set for the underlying file descriptor.
It returns the number of bytes written.
write_nonblock
just calls the write(2) system call. It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The result may also be smaller than string.length (partial write). The caller should care such errors and partial write.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying write_nonblock.
# Creates a pipe. r, w = IO.pipe # write_nonblock writes only 65536 bytes and return 65536. # (The pipe size is 65536 bytes on this environment.) s = "a" * 100000 p w.write_nonblock(s) #=> 65536 # write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN). p w.write_nonblock("b") # Resource temporarily unavailable (Errno::EAGAIN)
If the write buffer is not empty, it is flushed at first.
When write_nonblock
raises an exception kind of IO::WaitWritable
, write_nonblock
should not be called until io is writable for avoiding busy loop. This can be done as follows.
begin result = io.write_nonblock(string) rescue IO::WaitWritable, Errno::EINTR IO.select(nil, [io]) retry end
Note that this doesn’t guarantee to write all data in string. The length written is reported as result and it should be checked later.
On some platforms such as Windows, write_nonblock
is not supported according to the kind of the IO
object. In such cases, write_nonblock
raises Errno::EBADF
.
By specifying a keyword argument exception to false
, you can indicate that write_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
Try to convert obj into a Regexp
, using to_regexp method. Returns converted regexp or nil if obj cannot be converted for any reason.
Regexp.try_convert(/re/) #=> /re/ Regexp.try_convert("re") #=> nil o = Object.new Regexp.try_convert(o) #=> nil def o.to_regexp() /foo/ end Regexp.try_convert(o) #=> /foo/
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
# +remote_sockaddr+ - the +struct+ sockaddr contained in a string or Addrinfo object
# Pull down Google's web page require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(80, 'www.google.com') begin # emulate blocking connect socket.connect_nonblock(sockaddr) rescue IO::WaitWritable IO.select(nil, [socket]) # wait 3-way handshake completion begin socket.connect_nonblock(sockaddr) # check connection failure rescue Errno::EISCONN end end socket.write("GET / HTTP/1.0\r\n\r\n") results = socket.read
Refer to Socket#connect
for the exceptions that may be thrown if the call to connect_nonblock fails.
Socket#connect_nonblock
may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.
If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable
. So IO::WaitWritable
can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock
should not raise an IO::WaitWritable
exception, but return the symbol :wait_writable
instead.
# Socket#connect
Returns true for IPv4 multicast address (224.0.0.0/4). It returns false otherwise.
Returns true for IPv6 multicast address (ff00::/8). It returns false otherwise.
This method is defined for backward compatibility.
Scans the string until the pattern
is matched. Returns the substring up to and including the end of the match, advancing the scan pointer to that location. If there is no match, nil
is returned.
s = StringScanner.new("Fri Dec 12 1975 14:39") s.scan_until(/1/) # -> "Fri Dec 1" s.pre_match # -> "Fri Dec " s.scan_until(/XYZ/) # -> nil
Advances the scan pointer until pattern
is matched and consumed. Returns the number of bytes advanced, or nil
if no match was found.
Look ahead to match pattern
, and advance the scan pointer to the end of the match. Return the number of characters advanced, or nil
if the match was unsuccessful.
It’s similar to scan_until
, but without returning the intervening string.
s = StringScanner.new("Fri Dec 12 1975 14:39") s.skip_until /12/ # -> 10 s #
This returns the value that scan_until
would return, without advancing the scan pointer. The match register is affected, though.
s = StringScanner.new("Fri Dec 12 1975 14:39") s.check_until /12/ # -> "Fri Dec 12" s.pos # -> 0 s.matched # -> 12
Mnemonic: it “checks” to see whether a scan_until
will return a value.
Returns the size of arguments of the method.
tobj = WIN32OLE_TYPE.new('Microsoft Excel 9.0 Object Library', 'Workbook') method = WIN32OLE_METHOD.new(tobj, 'SaveAs') puts method.size_params # => 11
Returns major version.
tobj = WIN32OLE_TYPE.new('Microsoft Word 10.0 Object Library', 'Documents') puts tobj.major_version # => 8
Returns minor version.
tobj = WIN32OLE_TYPE.new('Microsoft Word 10.0 Object Library', 'Documents') puts tobj.minor_version # => 2
Returns the type library major version.
tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library') puts tlib.major_version # -> 1
Returns the type library minor version.
tlib = WIN32OLE_TYPELIB.new('Microsoft Excel 9.0 Object Library') puts tlib.minor_version # -> 3
If obj
is a Hash object, returns obj
.
Otherwise if obj
responds to :to_hash
, calls obj.to_hash
and returns the result.
Returns nil
if obj
does not respond to :to_hash
Raises an exception unless obj.to_hash
returns a Hash object.
Returns the data created by parsing the first line of string
or io
using the specified options
.
Argument string
should be a String object; it will be put into a new StringIO
object positioned at the beginning.
Argument io
should be an IO
object that is:
Open for reading; on return, the IO
object will be closed.
Positioned at the beginning. To position at the end, for appending, use method CSV.generate
. For any other positioning, pass a preset StringIO object instead.
Argument options
: see Options for Parsing
headers
Without option headers
, returns the first row as a new Array.
These examples assume prior execution of:
string = "foo,0\nbar,1\nbaz,2\n" path = 't.csv' File.write(path, string)
Parse the first line from a String object:
CSV.parse_line(string) # => ["foo", "0"]
Parse the first line from a File
object:
File.open(path) do |file| CSV.parse_line(file) # => ["foo", "0"] end # => ["foo", "0"]
Returns nil
if the argument is an empty String:
CSV.parse_line('') # => nil
headers
With {option headers
}, returns the first row as a CSV::Row
object.
These examples assume prior execution of:
string = "Name,Count\nfoo,0\nbar,1\nbaz,2\n" path = 't.csv' File.write(path, string)
Parse the first line from a String object:
CSV.parse_line(string, headers: true) # => #<CSV::Row "Name":"foo" "Count":"0">
Parse the first line from a File
object:
File.open(path) do |file| CSV.parse_line(file, headers: true) end # => #<CSV::Row "Name":"foo" "Count":"0">
Raises an exception if the argument is nil
:
# Raises ArgumentError (Cannot parse nil as CSV): CSV.parse_line(nil)
Returns the value that determines whether unconverted fields are to be available; used for parsing; see {Option unconverted_fields
}:
CSV.new('').unconverted_fields? # => nil
Returns an Array containing header converters; used for parsing; see Header Converters:
CSV.new('').header_converters # => []
Notes that you need to call +Ractor.make_shareable(CSV::HeaderConverters
)+ on the main Ractor
to use this method.