Results for: "match"

Returns the value for the given key, if found.

h = {foo: 0, bar: 1, baz: 2}
h.fetch(:bar) # => 1

If key is not found and no block was given, returns default_value:

{}.fetch(:nosuch, :default) # => :default

If key is not found and a block was given, yields key to the block and returns the block’s return value:

{}.fetch(:nosuch) {|key| "No key #{key}"} # => "No key nosuch"

Raises KeyError if neither default_value nor a block was given.

Note that this method does not use the values of either default or default_proc.

If name is the name of an environment variable, returns its value:

ENV['foo'] = '0'
ENV.fetch('foo') # => '0'

Otherwise if a block is given (but not a default value), yields name to the block and returns the block’s return value:

ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string

Otherwise if a default value is given (but not a block), returns the default value:

ENV.delete('foo')
ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string

If the environment variable does not exist and both default and block are given, issues a warning (“warning: block supersedes default value argument”), yields name to the block, and returns the block’s return value:

ENV.fetch('foo', :default) { |name| :block_return } # => :block_return

Raises KeyError if name is valid, but not found, and neither default value nor block is given:

ENV.fetch('foo') # Raises KeyError (key not found: "foo")

Raises an exception if name is invalid. See Invalid Names and Values.

This is a convenience method which is same as follows:

begin
  q = PrettyPrint.new(output, maxwidth, newline, &genspace)
  ...
  q.flush
  output
end

This method is just like PStore#[], save that you may also provide a default value for the object. In the event the specified name is not found in the data store, your default will be returned instead. If you do not specify a default, PStore::Error will be raised if the object is not found.

WARNING: This method is only valid in a PStore#transaction. It will raise PStore::Error if called at any other time.

Returns a fiber-local for the given key. If the key can’t be found, there are several options: With no other arguments, it will raise a KeyError exception; if default is given, then that will be returned; if the optional code block is specified, then that will be run and its result returned. See Thread#[] and Hash#fetch.

Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.

The syntax of a format sequence is as follows.

%[flags][width][.precision]type

A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf argument is to be interpreted, while the flags modify that interpretation.

The field type characters are:

Field |  Integer Format
------+--------------------------------------------------------------
  b   | Convert argument as a binary number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..1'.
  B   | Equivalent to `b', but uses an uppercase 0B for prefix
      | in the alternative format by #.
  d   | Convert argument as a decimal number.
  i   | Identical to `d'.
  o   | Convert argument as an octal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..7'.
  u   | Identical to `d'.
  x   | Convert argument as a hexadecimal number.
      | Negative numbers will be displayed as a two's complement
      | prefixed with `..f' (representing an infinite string of
      | leading 'ff's).
  X   | Equivalent to `x', but uses uppercase letters.

Field |  Float Format
------+--------------------------------------------------------------
  e   | Convert floating point argument into exponential notation
      | with one digit before the decimal point as [-]d.dddddde[+-]dd.
      | The precision specifies the number of digits after the decimal
      | point (defaulting to six).
  E   | Equivalent to `e', but uses an uppercase E to indicate
      | the exponent.
  f   | Convert floating point argument as [-]ddd.dddddd,
      | where the precision specifies the number of digits after
      | the decimal point.
  g   | Convert a floating point number using exponential form
      | if the exponent is less than -4 or greater than or
      | equal to the precision, or in dd.dddd form otherwise.
      | The precision specifies the number of significant digits.
  G   | Equivalent to `g', but use an uppercase `E' in exponent form.
  a   | Convert floating point argument as [-]0xh.hhhhp[+-]dd,
      | which is consisted from optional sign, "0x", fraction part
      | as hexadecimal, "p", and exponential part as decimal.
  A   | Equivalent to `a', but use uppercase `X' and `P'.

Field |  Other Format
------+--------------------------------------------------------------
  c   | Argument is the numeric code for a single character or
      | a single character string itself.
  p   | The valuing of argument.inspect.
  s   | Argument is a string to be substituted.  If the format
      | sequence contains a precision, at most that many characters
      | will be copied.
  %   | A percent sign itself will be displayed.  No argument taken.

The flags modifies the behavior of the formats. The flag characters are:

Flag     | Applies to    | Meaning
---------+---------------+-----------------------------------------
space    | bBdiouxX      | Leave a space at the start of
         | aAeEfgG       | non-negative numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
(digit)$ | all           | Specifies the absolute argument number
         |               | for this field.  Absolute and relative
         |               | argument numbers cannot be mixed in a
         |               | sprintf string.
---------+---------------+-----------------------------------------
 #       | bBoxX         | Use an alternative format.
         | aAeEfgG       | For the conversions `o', increase the precision
         |               | until the first digit will be `0' if
         |               | it is not formatted as complements.
         |               | For the conversions `x', `X', `b' and `B'
         |               | on non-zero, prefix the result with ``0x'',
         |               | ``0X'', ``0b'' and ``0B'', respectively.
         |               | For `a', `A', `e', `E', `f', `g', and 'G',
         |               | force a decimal point to be added,
         |               | even if no digits follow.
         |               | For `g' and 'G', do not remove trailing zeros.
---------+---------------+-----------------------------------------
+        | bBdiouxX      | Add a leading plus sign to non-negative
         | aAeEfgG       | numbers.
         | (numeric fmt) | For `o', `x', `X', `b' and `B', use
         |               | a minus sign with absolute value for
         |               | negative values.
---------+---------------+-----------------------------------------
-        | all           | Left-justify the result of this conversion.
---------+---------------+-----------------------------------------
0 (zero) | bBdiouxX      | Pad with zeros, not spaces.
         | aAeEfgG       | For `o', `x', `X', `b' and `B', radix-1
         | (numeric fmt) | is used for negative numbers formatted as
         |               | complements.
---------+---------------+-----------------------------------------
*        | all           | Use the next argument as the field width.
         |               | If negative, left-justify the result. If the
         |               | asterisk is followed by a number and a dollar
         |               | sign, use the indicated argument as the width.

Examples of flags:

# `+' and space flag specifies the sign of non-negative numbers.
sprintf("%d", 123)  #=> "123"
sprintf("%+d", 123) #=> "+123"
sprintf("% d", 123) #=> " 123"

# `#' flag for `o' increases number of digits to show `0'.
# `+' and space flag changes format of negative numbers.
sprintf("%o", 123)   #=> "173"
sprintf("%#o", 123)  #=> "0173"
sprintf("%+o", -123) #=> "-173"
sprintf("%o", -123)  #=> "..7605"
sprintf("%#o", -123) #=> "..7605"

# `#' flag for `x' add a prefix `0x' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%x", 123)   #=> "7b"
sprintf("%#x", 123)  #=> "0x7b"
sprintf("%+x", -123) #=> "-7b"
sprintf("%x", -123)  #=> "..f85"
sprintf("%#x", -123) #=> "0x..f85"
sprintf("%#x", 0)    #=> "0"

# `#' for `X' uses the prefix `0X'.
sprintf("%X", 123)  #=> "7B"
sprintf("%#X", 123) #=> "0X7B"

# `#' flag for `b' add a prefix `0b' for non-zero numbers.
# `+' and space flag disables complements for negative numbers.
sprintf("%b", 123)   #=> "1111011"
sprintf("%#b", 123)  #=> "0b1111011"
sprintf("%+b", -123) #=> "-1111011"
sprintf("%b", -123)  #=> "..10000101"
sprintf("%#b", -123) #=> "0b..10000101"
sprintf("%#b", 0)    #=> "0"

# `#' for `B' uses the prefix `0B'.
sprintf("%B", 123)  #=> "1111011"
sprintf("%#B", 123) #=> "0B1111011"

# `#' for `e' forces to show the decimal point.
sprintf("%.0e", 1)  #=> "1e+00"
sprintf("%#.0e", 1) #=> "1.e+00"

# `#' for `f' forces to show the decimal point.
sprintf("%.0f", 1234)  #=> "1234"
sprintf("%#.0f", 1234) #=> "1234."

# `#' for `g' forces to show the decimal point.
# It also disables stripping lowest zeros.
sprintf("%g", 123.4)   #=> "123.4"
sprintf("%#g", 123.4)  #=> "123.400"
sprintf("%g", 123456)  #=> "123456"
sprintf("%#g", 123456) #=> "123456."

The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.

Examples of width:

# padding is done by spaces,       width=20
# 0 or radix-1.             <------------------>
sprintf("%20d", 123)   #=> "                 123"
sprintf("%+20d", 123)  #=> "                +123"
sprintf("%020d", 123)  #=> "00000000000000000123"
sprintf("%+020d", 123) #=> "+0000000000000000123"
sprintf("% 020d", 123) #=> " 0000000000000000123"
sprintf("%-20d", 123)  #=> "123                 "
sprintf("%-+20d", 123) #=> "+123                "
sprintf("%- 20d", 123) #=> " 123                "
sprintf("%020x", -123) #=> "..ffffffffffffffff85"

For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s will always contribute exactly ten characters to the result.)

Examples of precisions:

# precision for `d', 'o', 'x' and 'b' is
# minimum number of digits               <------>
sprintf("%20.8d", 123)  #=> "            00000123"
sprintf("%20.8o", 123)  #=> "            00000173"
sprintf("%20.8x", 123)  #=> "            0000007b"
sprintf("%20.8b", 123)  #=> "            01111011"
sprintf("%20.8d", -123) #=> "           -00000123"
sprintf("%20.8o", -123) #=> "            ..777605"
sprintf("%20.8x", -123) #=> "            ..ffff85"
sprintf("%20.8b", -11)  #=> "            ..110101"

# "0x" and "0b" for `#x' and `#b' is not counted for
# precision but "0" for `#o' is counted.  <------>
sprintf("%#20.8d", 123)  #=> "            00000123"
sprintf("%#20.8o", 123)  #=> "            00000173"
sprintf("%#20.8x", 123)  #=> "          0x0000007b"
sprintf("%#20.8b", 123)  #=> "          0b01111011"
sprintf("%#20.8d", -123) #=> "           -00000123"
sprintf("%#20.8o", -123) #=> "            ..777605"
sprintf("%#20.8x", -123) #=> "          0x..ffff85"
sprintf("%#20.8b", -11)  #=> "          0b..110101"

# precision for `e' is number of
# digits after the decimal point           <------>
sprintf("%20.8e", 1234.56789) #=> "      1.23456789e+03"

# precision for `f' is number of
# digits after the decimal point               <------>
sprintf("%20.8f", 1234.56789) #=> "       1234.56789000"

# precision for `g' is number of
# significant digits                          <------->
sprintf("%20.8g", 1234.56789) #=> "           1234.5679"

#                                         <------->
sprintf("%20.8g", 123456789)  #=> "       1.2345679e+08"

# precision for `s' is
# maximum number of characters                    <------>
sprintf("%20.8s", "string test") #=> "            string t"

Examples:

sprintf("%d %04x", 123, 123)               #=> "123 007b"
sprintf("%08b '%4s'", 123, 123)            #=> "01111011 ' 123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8)   #=> "   hello 8 hello"
sprintf("%1$*2$s %2$d", "hello", -8)       #=> "hello    -8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23)   #=> "+1.23: 1.23:1.23"
sprintf("%u", -123)                        #=> "-123"

For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %{name} style doesn’t.

Examples:

sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 })
  #=> 1 : 2.000000
sprintf("%{foo}f", { :foo => 1 })
  # => "1f"

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Invokes the block with a Benchmark::Report object, which may be used to collect and report on the results of individual benchmark tests. Reserves label_width leading spaces for labels on each line. Prints caption at the top of the report, and uses format to format each line. (Note: caption must contain a terminating newline character, see the default Benchmark::Tms::CAPTION for an example.)

Returns an array of Benchmark::Tms objects.

If the block returns an array of Benchmark::Tms objects, these will be used to format additional lines of output. If labels parameter are given, these are used to label these extra lines.

Note: Other methods provide a simpler interface to this one, and are suitable for nearly all benchmarking requirements. See the examples in Benchmark, and the bm and bmbm methods.

Example:

require 'benchmark'
include Benchmark          # we need the CAPTION and FORMAT constants

n = 5000000
Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x|
  tf = x.report("for:")   { for i in 1..n; a = "1"; end }
  tt = x.report("times:") { n.times do   ; a = "1"; end }
  tu = x.report("upto:")  { 1.upto(n) do ; a = "1"; end }
  [tf+tt+tu, (tf+tt+tu)/3]
end

Generates:

              user     system      total        real
for:      0.970000   0.000000   0.970000 (  0.970493)
times:    0.990000   0.000000   0.990000 (  0.989542)
upto:     0.970000   0.000000   0.970000 (  0.972854)
>total:   2.930000   0.000000   2.930000 (  2.932889)
>avg:     0.976667   0.000000   0.976667 (  0.977630)

Returns the currently set formatter. By default, it is set to DidYouMean::Formatter.

Updates the primary formatter used to format the suggestions.

No documentation available
No documentation available
No documentation available

Downloads uri and returns it as a String.

A recommended version for use with a ~> Requirement.

@api private

No documentation available

Calls the block with each repeated permutation of length n of the elements of self; each permutation is an Array; returns self. The order of the permutations is indeterminate.

When a block and a positive Integer argument n are given, calls the block with each n-tuple repeated permutation of the elements of self. The number of permutations is self.size**n.

n = 1:

a = [0, 1, 2]
a.repeated_permutation(1) {|permutation| p permutation }

Output:

[0]
[1]
[2]

n = 2:

a.repeated_permutation(2) {|permutation| p permutation }

Output:

[0, 0]
[0, 1]
[0, 2]
[1, 0]
[1, 1]
[1, 2]
[2, 0]
[2, 1]
[2, 2]

If n is zero, calls the block once with an empty Array.

If n is negative, does not call the block:

a.repeated_permutation(-1) {|permutation| fail 'Cannot happen' }

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.repeated_permutation(2) # => #<Enumerator: [0, 1, 2]:permutation(2)>

Using Enumerators, it’s convenient to show the permutations and counts for some values of n:

e = a.repeated_permutation(0)
e.size # => 1
e.to_a # => [[]]
e = a.repeated_permutation(1)
e.size # => 3
e.to_a # => [[0], [1], [2]]
e = a.repeated_permutation(2)
e.size # => 9
e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2]]

Calls the block with each repeated combination of length n of the elements of self; each combination is an Array; returns self. The order of the combinations is indeterminate.

When a block and a positive Integer argument n are given, calls the block with each n-tuple repeated combination of the elements of self. The number of combinations is (n+1)(n+2)/2.

n = 1:

a = [0, 1, 2]
a.repeated_combination(1) {|combination| p combination }

Output:

[0]
[1]
[2]

n = 2:

a.repeated_combination(2) {|combination| p combination }

Output:

[0, 0]
[0, 1]
[0, 2]
[1, 1]
[1, 2]
[2, 2]

If n is zero, calls the block once with an empty Array.

If n is negative, does not call the block:

a.repeated_combination(-1) {|combination| fail 'Cannot happen' }

Returns a new Enumerator if no block given:

a = [0, 1, 2]
a.repeated_combination(2) # => #<Enumerator: [0, 1, 2]:combination(2)>

Using Enumerators, it’s convenient to show the combinations and counts for some values of n:

e = a.repeated_combination(0)
e.size # => 1
e.to_a # => [[]]
e = a.repeated_combination(1)
e.size # => 3
e.to_a # => [[0], [1], [2]]
e = a.repeated_combination(2)
e.size # => 6
e.to_a # => [[0, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 2]]

Passes each character in str to the given block, or returns an enumerator if no block is given.

"hello".each_char {|c| print c, ' ' }

produces:

h e l l o

Calls the block once for each entry except for “.” and “..” in the named directory, passing the filename of each entry as a parameter to the block.

If no block is given, an enumerator is returned instead.

Dir.each_child("testdir") {|x| puts "Got #{x}" }

produces:

Got config.h
Got main.rb

Calls the block once for each entry except for “.” and “..” in this directory, passing the filename of each entry as a parameter to the block.

If no block is given, an enumerator is returned instead.

d = Dir.new("testdir")
d.each_child  {|x| puts "Got #{x}" }

produces:

Got config.h
Got main.rb

Returns the locale charmap name. It returns nil if no appropriate information.

Debian GNU/Linux
  LANG=C
    Encoding.locale_charmap  #=> "ANSI_X3.4-1968"
  LANG=ja_JP.EUC-JP
    Encoding.locale_charmap  #=> "EUC-JP"

SunOS 5
  LANG=C
    Encoding.locale_charmap  #=> "646"
  LANG=ja
    Encoding.locale_charmap  #=> "eucJP"

The result is highly platform dependent. So Encoding.find(Encoding.locale_charmap) may cause an error. If you need some encoding object even for unknown locale, Encoding.find(“locale”) can be used.

Calls the given block once for each character in ios, passing the character as an argument. The stream must be opened for reading or an IOError will be raised.

If no block is given, an enumerator is returned instead.

f = File.new("testfile")
f.each_char {|c| print c, ' ' }   #=> #<File:testfile>

Iterates over the children of the directory (files and subdirectories, not recursive).

It yields Pathname object for each child.

By default, the yielded pathnames will have enough information to access the files.

If you set with_directory to false, then the returned pathnames will contain the filename only.

Pathname("/usr/local").each_child {|f| p f }
#=> #<Pathname:/usr/local/share>
#   #<Pathname:/usr/local/bin>
#   #<Pathname:/usr/local/games>
#   #<Pathname:/usr/local/lib>
#   #<Pathname:/usr/local/include>
#   #<Pathname:/usr/local/sbin>
#   #<Pathname:/usr/local/src>
#   #<Pathname:/usr/local/man>

Pathname("/usr/local").each_child(false) {|f| p f }
#=> #<Pathname:share>
#   #<Pathname:bin>
#   #<Pathname:games>
#   #<Pathname:lib>
#   #<Pathname:include>
#   #<Pathname:sbin>
#   #<Pathname:src>
#   #<Pathname:man>

Note that the results never contain the entries . and .. in the directory because they are not children.

See Pathname#children

Search took: 17ms  ·  Total Results: 1813