Set
the default id conversion object.
This is expected to be an instance such as DRb::DRbIdConv
that responds to to_id
and to_obj
that can convert objects to and from DRb
references.
See DRbServer#default_id_conv.
Set
the default id conversion object.
This is expected to be an instance such as DRb::DRbIdConv
that responds to to_id
and to_obj
that can convert objects to and from DRb
references.
See DRbServer#default_id_conv.
Returns whether or not the struct of type type
contains member
. If it does not, or the struct type can’t be found, then false is returned. You may optionally specify additional headers
in which to look for the struct (in addition to the common header files).
If found, a macro is passed as a preprocessor constant to the compiler using the type name and the member name, in uppercase, prepended with HAVE_
.
For example, if have_struct_member('struct foo', 'bar')
returned true, then the HAVE_STRUCT_FOO_BAR
preprocessor macro would be passed to the compiler.
HAVE_ST_BAR
is also defined for backward compatibility.
Generates URL-encoded form data from given enum
.
This generates application/x-www-form-urlencoded data defined in HTML5 from given an Enumerable
object.
This internally uses URI.encode_www_form_component(str)
.
This method doesn’t convert the encoding of given items, so convert them before calling this method if you want to send data as other than original encoding or mixed encoding data. (Strings which are encoded in an HTML5 ASCII incompatible encoding are converted to UTF-8.)
This method doesn’t handle files. When you send a file, use multipart/form-data.
This refers url.spec.whatwg.org/#concept-urlencoded-serializer
URI.encode_www_form([["q", "ruby"], ["lang", "en"]]) #=> "q=ruby&lang=en" URI.encode_www_form("q" => "ruby", "lang" => "en") #=> "q=ruby&lang=en" URI.encode_www_form("q" => ["ruby", "perl"], "lang" => "en") #=> "q=ruby&q=perl&lang=en" URI.encode_www_form([["q", "ruby"], ["q", "perl"], ["lang", "en"]]) #=> "q=ruby&q=perl&lang=en"
Decodes URL-encoded form data from given str
.
This decodes application/x-www-form-urlencoded data and returns an array of key-value arrays.
This refers url.spec.whatwg.org/#concept-urlencoded-parser, so this supports only &-separator, and doesn’t support ;-separator.
ary = URI.decode_www_form("a=1&a=2&b=3") ary #=> [['a', '1'], ['a', '2'], ['b', '3']] ary.assoc('a').last #=> '1' ary.assoc('b').last #=> '3' ary.rassoc('a').last #=> '2' Hash[ary] #=> {"a"=>"2", "b"=>"3"}
Returns a list of paths matching glob
from the latest gems that can be used by a gem to pick up features from other gems. For example:
Gem.find_latest_files('rdoc/discover').each do |path| load path end
if check_load_path
is true (the default), then find_latest_files
also searches $LOAD_PATH for files as well as gems.
Unlike find_files
, find_latest_files
will return only files from the latest version of a gem.
Returns the latest release version of RubyGems.
Regexp
for require-able plugin suffixes.
Deduce Ruby’s –program-prefix and –program-suffix from its install name
Default options for gem commands for Ruby packagers.
The options here should be structured as an array of string “gem” command names as keys and a string of the default options as values.
Example:
def self.operating_system_defaults
{ 'install' => '--no-rdoc --no-ri --env-shebang', 'update' => '--no-rdoc --no-ri --env-shebang' }
end
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
class G include TSort def initialize(g) @g = g end def tsort_each_child(n, &b) @g[n].each(&b) end def tsort_each_node(&b) @g.each_key(&b) end end graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2], [3], [1]] graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}) p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
Returns strongly connected components as an array of arrays of nodes. The array is sorted from children to parents. Each elements of the array represents a strongly connected component.
The graph is represented by each_node and each_child. each_node should have call
method which yields for each node in the graph. each_child should have call
method which takes a node argument and yields for each child node.
g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2], [3], [1]] g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]} each_node = lambda {|&b| g.each_key(&b) } each_child = lambda {|n, &b| g[n].each(&b) } p TSort.strongly_connected_components(each_node, each_child) #=> [[4], [2, 3], [1]]
Should be implemented by a extended class.
tsort_each_node
is used to iterate for all nodes over a graph.
Should be implemented by a extended class.
tsort_each_child
is used to iterate for child nodes of node.
@return [Boolean] where the requirement of the state we’re unwinding
to directly caused the conflict. Note: in this case, it is impossible for the state we're unwinding to to be a parent of any of the other conflicting requirements (or we would have circularity)
@return [Array] array of all the requirements that led to the need for
this unwind
The line number in the source code where this AST’s text began.
The column number in the source code where this AST’s text began.
The line number in the source code where this AST’s text ended.
The column number in the source code where this AST’s text ended.
Encodes this DH
to its DER encoding. Note that any existing per-session public/private keys will not get encoded, just the Diffie-Hellman parameters will be encoded.
Encodes this DH
to its PEM encoding. Note that any existing per-session public/private keys will not get encoded, just the Diffie-Hellman parameters will be encoded.
Encodes this DSA
to its DER encoding.