Results for: "Array"

Exception class used to return errors from the dbm library.

No documentation available
No documentation available

A Range represents an interval—a set of values with a beginning and an end. Ranges may be constructed using the s..e and s...e literals, or with Range::new. Ranges constructed using .. run from the beginning to the end inclusively. Those created using ... exclude the end value. When used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a      #=> []
(-5..-1).to_a      #=> [-5, -4, -3, -2, -1]
('a'..'e').to_a    #=> ["a", "b", "c", "d", "e"]
('a'...'e').to_a   #=> ["a", "b", "c", "d"]

Beginless/Endless Ranges

A “beginless range” and “endless range” represents a semi-infinite range. Literal notation for a beginless range is:

(..1)
# or
(...1)

Literal notation for an endless range is:

(1..)
# or similarly
(1...)

Which is equivalent to

(1..nil)  # or similarly (1...nil)
Range.new(1, nil) # or Range.new(1, nil, true)

Beginless/endless ranges are useful, for example, for idiomatic slicing of arrays:

[1, 2, 3, 4, 5][...2]   # => [1, 2]
[1, 2, 3, 4, 5][2...]   # => [3, 4, 5]

Some implementation details:

Custom Objects in Ranges

Ranges can be constructed using any objects that can be compared using the <=> operator. Methods that treat the range as a sequence (each and methods inherited from Enumerable) expect the begin object to implement a succ method to return the next object in sequence. The step and include? methods require the begin object to implement succ or to be numeric.

In the Xs class below both <=> and succ are implemented so Xs can be used to construct ranges. Note that the Comparable module is included so the == method is defined in terms of <=>.

class Xs                # represent a string of 'x's
  include Comparable
  attr :length
  def initialize(n)
    @length = n
  end
  def succ
    Xs.new(@length + 1)
  end
  def <=>(other)
    @length <=> other.length
  end
  def to_s
    sprintf "%2d #{inspect}", @length
  end
  def inspect
    'x' * @length
  end
end

An example of using Xs to construct a range:

r = Xs.new(3)..Xs.new(6)   #=> xxx..xxxxxx
r.to_a                     #=> [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5))       #=> true

SocketError is the error class for socket.

Raised when OLE processing failed.

EX:

obj = WIN32OLE.new("NonExistProgID")

raises the exception:

WIN32OLERuntimeError: unknown OLE server: `NonExistProgID'
    HRESULT error code:0x800401f3
      Invalid class string
No documentation available

Raised when an IO operation fails.

File.open("/etc/hosts") {|f| f << "example"}
  #=> IOError: not opened for writing

File.open("/etc/hosts") {|f| f.close; f.read }
  #=> IOError: closed stream

Note that some IO failures raise SystemCallErrors and these are not subclasses of IOError:

File.open("does/not/exist")
  #=> Errno::ENOENT: No such file or directory - does/not/exist

Raised by some IO operations when reaching the end of file. Many IO methods exist in two forms,

one that returns nil when the end of file is reached, the other raises EOFError.

EOFError is a subclass of IOError.

file = File.open("/etc/hosts")
file.read
file.gets     #=> nil
file.readline #=> EOFError: end of file reached

ARGF is a stream designed for use in scripts that process files given as command-line arguments or passed in via STDIN.

The arguments passed to your script are stored in the ARGV Array, one argument per element. ARGF assumes that any arguments that aren’t filenames have been removed from ARGV. For example:

$ ruby argf.rb --verbose file1 file2

ARGV  #=> ["--verbose", "file1", "file2"]
option = ARGV.shift #=> "--verbose"
ARGV  #=> ["file1", "file2"]

You can now use ARGF to work with a concatenation of each of these named files. For instance, ARGF.read will return the contents of file1 followed by the contents of file2.

After a file in ARGV has been read ARGF removes it from the Array. Thus, after all files have been read ARGV will be empty.

You can manipulate ARGV yourself to control what ARGF operates on. If you remove a file from ARGV, it is ignored by ARGF; if you add files to ARGV, they are treated as if they were named on the command line. For example:

ARGV.replace ["file1"]
ARGF.readlines # Returns the contents of file1 as an Array
ARGV           #=> []
ARGV.replace ["file2", "file3"]
ARGF.read      # Returns the contents of file2 and file3

If ARGV is empty, ARGF acts as if it contained STDIN, i.e. the data piped to your script. For example:

$ echo "glark" | ruby -e 'p ARGF.read'
"glark\n"

Outputs a source level execution trace of a Ruby program.

It does this by registering an event handler with Kernel#set_trace_func for processing incoming events. It also provides methods for filtering unwanted trace output (see Tracer.add_filter, Tracer.on, and Tracer.off).

Example

Consider the following Ruby script

class A
  def square(a)
    return a*a
  end
end

a = A.new
a.square(5)

Running the above script using ruby -r tracer example.rb will output the following trace to STDOUT (Note you can also explicitly require 'tracer')

#0:<internal:lib/rubygems/custom_require>:38:Kernel:<: -
#0:example.rb:3::-: class A
#0:example.rb:3::C: class A
#0:example.rb:4::-:   def square(a)
#0:example.rb:7::E: end
#0:example.rb:9::-: a = A.new
#0:example.rb:10::-: a.square(5)
#0:example.rb:4:A:>:   def square(a)
#0:example.rb:5:A:-:     return a*a
#0:example.rb:6:A:<:   end
 |  |         | |  |
 |  |         | |   ---------------------+ event
 |  |         |  ------------------------+ class
 |  |          --------------------------+ line
 |   ------------------------------------+ filename
  ---------------------------------------+ thread

Symbol table used for displaying incoming events:

+}+

call a C-language routine

+{+

return from a C-language routine

+>+

call a Ruby method

C

start a class or module definition

E

finish a class or module definition

-

execute code on a new line

+^+

raise an exception

+<+

return from a Ruby method

by Keiju ISHITSUKA(keiju@ishitsuka.com)

No documentation available
No documentation available
No documentation available
No documentation available

OptionParser

Introduction

OptionParser is a class for command-line option analysis. It is much more advanced, yet also easier to use, than GetoptLong, and is a more Ruby-oriented solution.

Features

  1. The argument specification and the code to handle it are written in the same place.

  2. It can output an option summary; you don’t need to maintain this string separately.

  3. Optional and mandatory arguments are specified very gracefully.

  4. Arguments can be automatically converted to a specified class.

  5. Arguments can be restricted to a certain set.

All of these features are demonstrated in the examples below. See make_switch for full documentation.

Minimal example

require 'optparse'

options = {}
OptionParser.new do |parser|
  parser.banner = "Usage: example.rb [options]"

  parser.on("-v", "--[no-]verbose", "Run verbosely") do |v|
    options[:verbose] = v
  end
end.parse!

p options
p ARGV

Generating Help

OptionParser can be used to automatically generate help for the commands you write:

require 'optparse'

Options = Struct.new(:name)

class Parser
  def self.parse(options)
    args = Options.new("world")

    opt_parser = OptionParser.new do |parser|
      parser.banner = "Usage: example.rb [options]"

      parser.on("-nNAME", "--name=NAME", "Name to say hello to") do |n|
        args.name = n
      end

      parser.on("-h", "--help", "Prints this help") do
        puts parser
        exit
      end
    end

    opt_parser.parse!(options)
    return args
  end
end
options = Parser.parse %w[--help]

#=>
   # Usage: example.rb [options]
   #     -n, --name=NAME                  Name to say hello to
   #     -h, --help                       Prints this help

Required Arguments

For options that require an argument, option specification strings may include an option name in all caps. If an option is used without the required argument, an exception will be raised.

require 'optparse'

options = {}
OptionParser.new do |parser|
  parser.on("-r", "--require LIBRARY",
            "Require the LIBRARY before executing your script") do |lib|
    puts "You required #{lib}!"
  end
end.parse!

Used:

$ ruby optparse-test.rb -r
optparse-test.rb:9:in `<main>': missing argument: -r (OptionParser::MissingArgument)
$ ruby optparse-test.rb -r my-library
You required my-library!

Type Coercion

OptionParser supports the ability to coerce command line arguments into objects for us.

OptionParser comes with a few ready-to-use kinds of type coercion. They are:

We can also add our own coercions, which we will cover below.

Using Built-in Conversions

As an example, the built-in Time conversion is used. The other built-in conversions behave in the same way. OptionParser will attempt to parse the argument as a Time. If it succeeds, that time will be passed to the handler block. Otherwise, an exception will be raised.

require 'optparse'
require 'optparse/time'
OptionParser.new do |parser|
  parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time|
    p time
  end
end.parse!

Used:

$ ruby optparse-test.rb  -t nonsense
... invalid argument: -t nonsense (OptionParser::InvalidArgument)
$ ruby optparse-test.rb  -t 10-11-12
2010-11-12 00:00:00 -0500
$ ruby optparse-test.rb  -t 9:30
2014-08-13 09:30:00 -0400

Creating Custom Conversions

The accept method on OptionParser may be used to create converters. It specifies which conversion block to call whenever a class is specified. The example below uses it to fetch a User object before the on handler receives it.

require 'optparse'

User = Struct.new(:id, :name)

def find_user id
  not_found = ->{ raise "No User Found for id #{id}" }
  [ User.new(1, "Sam"),
    User.new(2, "Gandalf") ].find(not_found) do |u|
    u.id == id
  end
end

op = OptionParser.new
op.accept(User) do |user_id|
  find_user user_id.to_i
end

op.on("--user ID", User) do |user|
  puts user
end

op.parse!

Used:

$ ruby optparse-test.rb --user 1
#<struct User id=1, name="Sam">
$ ruby optparse-test.rb --user 2
#<struct User id=2, name="Gandalf">
$ ruby optparse-test.rb --user 3
optparse-test.rb:15:in `block in find_user': No User Found for id 3 (RuntimeError)

Store options to a Hash

The into option of order, parse and so on methods stores command line options into a Hash.

require 'optparse'

params = {}
OptionParser.new do |parser|
  parser.on('-a')
  parser.on('-b NUM', Integer)
  parser.on('-v', '--verbose')
end.parse!(into: params)

p params

Used:

$ ruby optparse-test.rb -a
{:a=>true}
$ ruby optparse-test.rb -a -v
{:a=>true, :verbose=>true}
$ ruby optparse-test.rb -a -b 100
{:a=>true, :b=>100}

Complete example

The following example is a complete Ruby program. You can run it and see the effect of specifying various options. This is probably the best way to learn the features of optparse.

require 'optparse'
require 'optparse/time'
require 'ostruct'
require 'pp'

class OptparseExample
  Version = '1.0.0'

  CODES = %w[iso-2022-jp shift_jis euc-jp utf8 binary]
  CODE_ALIASES = { "jis" => "iso-2022-jp", "sjis" => "shift_jis" }

  class ScriptOptions
    attr_accessor :library, :inplace, :encoding, :transfer_type,
                  :verbose, :extension, :delay, :time, :record_separator,
                  :list

    def initialize
      self.library = []
      self.inplace = false
      self.encoding = "utf8"
      self.transfer_type = :auto
      self.verbose = false
    end

    def define_options(parser)
      parser.banner = "Usage: example.rb [options]"
      parser.separator ""
      parser.separator "Specific options:"

      # add additional options
      perform_inplace_option(parser)
      delay_execution_option(parser)
      execute_at_time_option(parser)
      specify_record_separator_option(parser)
      list_example_option(parser)
      specify_encoding_option(parser)
      optional_option_argument_with_keyword_completion_option(parser)
      boolean_verbose_option(parser)

      parser.separator ""
      parser.separator "Common options:"
      # No argument, shows at tail.  This will print an options summary.
      # Try it and see!
      parser.on_tail("-h", "--help", "Show this message") do
        puts parser
        exit
      end
      # Another typical switch to print the version.
      parser.on_tail("--version", "Show version") do
        puts Version
        exit
      end
    end

    def perform_inplace_option(parser)
      # Specifies an optional option argument
      parser.on("-i", "--inplace [EXTENSION]",
                "Edit ARGV files in place",
                "(make backup if EXTENSION supplied)") do |ext|
        self.inplace = true
        self.extension = ext || ''
        self.extension.sub!(/\A\.?(?=.)/, ".")  # Ensure extension begins with dot.
      end
    end

    def delay_execution_option(parser)
      # Cast 'delay' argument to a Float.
      parser.on("--delay N", Float, "Delay N seconds before executing") do |n|
        self.delay = n
      end
    end

    def execute_at_time_option(parser)
      # Cast 'time' argument to a Time object.
      parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time|
        self.time = time
      end
    end

    def specify_record_separator_option(parser)
      # Cast to octal integer.
      parser.on("-F", "--irs [OCTAL]", OptionParser::OctalInteger,
                "Specify record separator (default \\0)") do |rs|
        self.record_separator = rs
      end
    end

    def list_example_option(parser)
      # List of arguments.
      parser.on("--list x,y,z", Array, "Example 'list' of arguments") do |list|
        self.list = list
      end
    end

    def specify_encoding_option(parser)
      # Keyword completion.  We are specifying a specific set of arguments (CODES
      # and CODE_ALIASES - notice the latter is a Hash), and the user may provide
      # the shortest unambiguous text.
      code_list = (CODE_ALIASES.keys + CODES).join(', ')
      parser.on("--code CODE", CODES, CODE_ALIASES, "Select encoding",
                "(#{code_list})") do |encoding|
        self.encoding = encoding
      end
    end

    def optional_option_argument_with_keyword_completion_option(parser)
      # Optional '--type' option argument with keyword completion.
      parser.on("--type [TYPE]", [:text, :binary, :auto],
                "Select transfer type (text, binary, auto)") do |t|
        self.transfer_type = t
      end
    end

    def boolean_verbose_option(parser)
      # Boolean switch.
      parser.on("-v", "--[no-]verbose", "Run verbosely") do |v|
        self.verbose = v
      end
    end
  end

  #
  # Return a structure describing the options.
  #
  def parse(args)
    # The options specified on the command line will be collected in
    # *options*.

    @options = ScriptOptions.new
    @args = OptionParser.new do |parser|
      @options.define_options(parser)
      parser.parse!(args)
    end
    @options
  end

  attr_reader :parser, :options
end  # class OptparseExample

example = OptparseExample.new
options = example.parse(ARGV)
pp options # example.options
pp ARGV

Shell Completion

For modern shells (e.g. bash, zsh, etc.), you can use shell completion for command line options.

Further documentation

The above examples should be enough to learn how to use this class. If you have any questions, file a ticket at bugs.ruby-lang.org.

Raised when attempting to divide an integer by 0.

42 / 0   #=> ZeroDivisionError: divided by 0

Note that only division by an exact 0 will raise the exception:

42 /  0.0   #=> Float::INFINITY
42 / -0.0   #=> -Float::INFINITY
0  /  0.0   #=> NaN

Raised when attempting to convert special float values (in particular Infinity or NaN) to numerical classes which don’t support them.

Float::INFINITY.to_r   #=> FloatDomainError: Infinity

Raised when Ruby can’t yield as requested.

A typical scenario is attempting to yield when no block is given:

def call_block
  yield 42
end
call_block

raises the exception:

LocalJumpError: no block given (yield)

A more subtle example:

def get_me_a_return
  Proc.new { return 42 }
end
get_me_a_return.call

raises the exception:

LocalJumpError: unexpected return

Raised in case of a stack overflow.

def me_myself_and_i
  me_myself_and_i
end
me_myself_and_i

raises the exception:

SystemStackError: stack level too deep

Ractor is a Actor-model abstraction for Ruby that provides thread-safe parallel execution.

Ractor.new can make new Ractor and it will run in parallel.

# The simplest ractor
r = Ractor.new {puts "I am in Ractor!"}
r.take # wait it to finish
# here "I am in Ractor!" would be printed

Ractors do not share usual objects, so the some kind of thread-safety concerns such as data-race, race-conditions are not available on multi-ractor programming.

To achieve this, ractors severely limit object sharing between different ractors. For example, unlike threads, ractors can’t access each other’s objects, nor any objects through variables of the outer scope.

a = 1
r = Ractor.new {puts "I am in Ractor! a=#{a}"}
# fails immediately with
# ArgumentError (can not isolate a Proc because it accesses outer variables (a).)

On CRuby (the default implementation), Global Virtual Machine Lock (GVL) is held per ractor, so ractors are performed in parallel without locking each other.

Instead of accessing the shared state, the objects should be passed to and from ractors via sending and receiving objects as messages.

a = 1
r = Ractor.new do
  a_in_ractor = receive # receive blocks till somebody will pass message
  puts "I am in Ractor! a=#{a_in_ractor}"
end
r.send(a)  # pass it
r.take
# here "I am in Ractor! a=1" would be printed

There are two pairs of methods for sending/receiving messages:

In addition to that, an argument to Ractor.new would be passed to block and available there as if received by Ractor.receive, and the last block value would be sent outside of the ractor as if sent by Ractor.yield.

A little demonstration on a classic ping-pong:

server = Ractor.new do
  puts "Server starts: #{self.inspect}"
  puts "Server sends: ping"
  Ractor.yield 'ping'                       # The server doesn't know the receiver and sends to whoever interested
  received = Ractor.receive                 # The server doesn't know the sender and receives from whoever sent
  puts "Server received: #{received}"
end

client = Ractor.new(server) do |srv|        # The server is sent inside client, and available as srv
  puts "Client starts: #{self.inspect}"
  received = srv.take                       # The Client takes a message specifically from the server
  puts "Client received from " \
       "#{srv.inspect}: #{received}"
  puts "Client sends to " \
       "#{srv.inspect}: pong"
  srv.send 'pong'                           # The client sends a message specifically to the server
end

[client, server].each(&:take)               # Wait till they both finish

This will output:

Server starts: #<Ractor:#2 test.rb:1 running>
Server sends: ping
Client starts: #<Ractor:#3 test.rb:8 running>
Client received from #<Ractor:#2 rac.rb:1 blocking>: ping
Client sends to #<Ractor:#2 rac.rb:1 blocking>: pong
Server received: pong

It is said that Ractor receives messages via the incoming port, and sends them to the outgoing port. Either one can be disabled with Ractor#close_incoming and Ractor#close_outgoing respectively. If a ractor terminated, its ports will be closed automatically.

Shareable and unshareable objects

When the object is sent to and from the ractor, it is important to understand whether the object is shareable or unshareable. Most of objects are unshareable objects.

Shareable objects are basically those which can be used by several threads without compromising thread-safety; e.g. immutable ones. Ractor.shareable? allows to check this, and Ractor.make_shareable tries to make object shareable if it is not.

Ractor.shareable?(1)            #=> true -- numbers and other immutable basic values are
Ractor.shareable?('foo')        #=> false, unless the string is frozen due to # freeze_string_literals: true
Ractor.shareable?('foo'.freeze) #=> true

ary = ['hello', 'world']
ary.frozen?                 #=> false
ary[0].frozen?              #=> false
Ractor.make_shareable(ary)
ary.frozen?                 #=> true
ary[0].frozen?              #=> true
ary[1].frozen?              #=> true

When a shareable object is sent (via send or Ractor.yield), no additional processing happens, and it just becomes usable by both ractors. When an unshareable object is sent, it can be either copied or moved. The first is the default, and it makes the object’s full copy by deep cloning of non-shareable parts of its structure.

data = ['foo', 'bar'.freeze]
r = Ractor.new do
  data2 = Ractor.receive
  puts "In ractor: #{data2.object_id}, #{data2[0].object_id}, #{data2[1].object_id}"
end
r.send(data)
r.take
puts "Outside  : #{data.object_id}, #{data[0].object_id}, #{data[1].object_id}"

This will output:

In ractor: 340, 360, 320
Outside  : 380, 400, 320

(Note that object id of both array and non-frozen string inside array have changed inside the ractor, showing it is different objects. But the second array’s element, which is a shareable frozen string, has the same object_id.)

Deep cloning of the objects may be slow, and sometimes impossible. Alternatively, move: true may be used on sending. This will move the object to the receiving ractor, making it inaccessible for a sending ractor.

data = ['foo', 'bar']
r = Ractor.new do
  data_in_ractor = Ractor.receive
  puts "In ractor: #{data_in_ractor.object_id}, #{data_in_ractor[0].object_id}"
end
r.send(data, move: true)
r.take
puts "Outside: moved? #{Ractor::MovedObject === data}"
puts "Outside: #{data.inspect}"

This will output:

In ractor: 100, 120
Outside: moved? true
test.rb:9:in `method_missing': can not send any methods to a moved object (Ractor::MovedError)

Notice that even inspect (and more basic methods like __id__) is inaccessible on a moved object.

Besides frozen objects, there are shareable objects. Class and Module objects are shareable so the Class/Module definitons are shared between ractors. Ractor objects are also shareable objects. All operations for the shareable mutable objects are thread-safe, so the thread-safety property will be kept. We can not define mutable shareable objects in Ruby, but C extensions can introduce them.

It is prohibited to access instance variables of mutable shareable objects (especially Modules and classes) from ractors other than main:

class C
  class << self
    attr_accessor :tricky
  end
end

C.tricky = 'test'

r = Ractor.new(C) do |cls|
  puts "I see #{cls}"
  puts "I can't see #{cls.tricky}"
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

Ractors can access constants if they are shareable. The main Ractor is the only one that can access non-shareable constants.

GOOD = 'good'.freeze
BAD = 'bad'

r = Ractor.new do
  puts "GOOD=#{GOOD}"
  puts "BAD=#{BAD}"
end
r.take
# GOOD=good
# can not access non-shareable objects in constant Object::BAD by non-main Ractor. (NameError)

# Consider the same C class from above

r = Ractor.new do
  puts "I see #{C}"
  puts "I can't see #{C.tricky}"
end
r.take
# I see C
# can not access instance variables of classes/modules from non-main Ractors (RuntimeError)

See also the description of # shareable_constant_value pragma in Comments syntax explanation.

Ractors vs threads

Each ractor creates its own thread. New threads can be created from inside ractor (and, on CRuby, sharing GVL with other threads of this ractor).

r = Ractor.new do
  a = 1
  Thread.new {puts "Thread in ractor: a=#{a}"}.join
end
r.take
# Here "Thread in ractor: a=1" will be printed

Note on code examples

In examples below, sometimes we use the following method to wait till ractors that are not currently blocked will finish (or process till next blocking) method.

def wait
  sleep(0.1)
end

It is **only for demonstration purposes** and shouldn’t be used in a real code. Most of the times, just take is used to wait till ractor will finish.

Reference

See Ractor desgin doc for more details.

Random provides an interface to Ruby’s pseudo-random number generator, or PRNG. The PRNG produces a deterministic sequence of bits which approximate true randomness. The sequence may be represented by integers, floats, or binary strings.

The generator may be initialized with either a system-generated or user-supplied seed value by using Random.srand.

The class method Random.rand provides the base functionality of Kernel.rand along with better handling of floating point values. These are both interfaces to the Ruby system PRNG.

Random.new will create a new PRNG with a state independent of the Ruby system PRNG, allowing multiple generators with different seed values or sequence positions to exist simultaneously. Random objects can be marshaled, allowing sequences to be saved and resumed.

PRNGs are currently implemented as a modified Mersenne Twister with a period of 2**19937-1. As this algorithm is not for cryptographical use, you must use SecureRandom for security purpose, instead of this PRNG.

Raised when given an invalid regexp expression.

Regexp.new("?")

raises the exception:

RegexpError: target of repeat operator is not specified: /?/

Raised when an invalid operation is attempted on a thread.

For example, when no other thread has been started:

Thread.stop

This will raises the following exception:

ThreadError: stopping only thread
note: use sleep to stop forever

ConditionVariable objects augment class Mutex. Using condition variables, it is possible to suspend while in the middle of a critical section until a resource becomes available.

Example:

mutex = Mutex.new
resource = ConditionVariable.new

a = Thread.new {
   mutex.synchronize {
     # Thread 'a' now needs the resource
     resource.wait(mutex)
     # 'a' can now have the resource
   }
}

b = Thread.new {
   mutex.synchronize {
     # Thread 'b' has finished using the resource
     resource.signal
   }
}
Search took: 6ms  ·  Total Results: 1311