Results for: "OptionParser"

Returns the receiver.

string = "my string"
string.itself.object_id == string.object_id   #=> true

Invokes the method identified by symbol, passing it any arguments specified. When the method is identified by a string, the string is converted to a symbol.

BasicObject implements __send__, Kernel implements send. __send__ is safer than send when obj has the same method name like Socket. See also public_send.

class Klass
  def hello(*args)
    "Hello " + args.join(' ')
  end
end
k = Klass.new
k.send :hello, "gentle", "readers"   #=> "Hello gentle readers"

Returns an array with both a numeric and a big represented as Bignum objects.

This is achieved by converting numeric to a Bignum.

A TypeError is raised if the numeric is not a Fixnum or Bignum type.

(0x3FFFFFFFFFFFFFFF+1).coerce(42)   #=> [42, 4611686018427387904]

Since int is already an Integer, this always returns true.

Returns true if int has a zero value.

Iterates the given block, passing in integer values from int up to and including limit.

If no block is given, an Enumerator is returned instead.

5.upto(10) {|i| print i, " " }   #=> 5 6 7 8 9 10

Iterates the given block int times, passing in values from zero to int - 1.

If no block is given, an Enumerator is returned instead.

5.times {|i| print i, " " }   #=> 0 1 2 3 4

Returns the remainder after dividing int by numeric.

x.remainder(y) means x-y*(x/y).truncate.

5.remainder(3)     #=> 2
-5.remainder(3)    #=> -2
5.remainder(-3)    #=> 2
-5.remainder(-3)   #=> -2
5.remainder(1.5)   #=> 0.5

See Numeric#divmod.

Returns self.

Returns a complex object which denotes the given rectangular form.

Complex.rectangular(1, 2)  #=> (1+2i)

Returns a complex object which denotes the given polar form.

Complex.polar(3, 0)            #=> (3.0+0.0i)
Complex.polar(3, Math::PI/2)   #=> (1.836909530733566e-16+3.0i)
Complex.polar(3, Math::PI)     #=> (-3.0+3.673819061467132e-16i)
Complex.polar(3, -Math::PI/2)  #=> (1.836909530733566e-16-3.0i)

Returns the imaginary part.

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Returns the angle part of its polar form.

Complex.polar(3, Math::PI/2).arg  #=> 1.5707963267948966

Returns an array; [cmp.real, cmp.imag].

Complex(1, 2).rectangular  #=> [1, 2]

Returns an array; [cmp.abs, cmp.arg].

Complex(1, 2).polar  #=> [2.23606797749979, 1.1071487177940904]

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

Returns the complex conjugate.

Complex(1, 2).conjugate  #=> (1-2i)

Returns the numerator.

    1   2       3+4i  <-  numerator
    - + -i  ->  ----
    2   3        6    <-  denominator

c = Complex('1/2+2/3i')  #=> ((1/2)+(2/3)*i)
n = c.numerator          #=> (3+4i)
d = c.denominator        #=> 6
n / d                    #=> ((1/2)+(2/3)*i)
Complex(Rational(n.real, d), Rational(n.imag, d))
                         #=> ((1/2)+(2/3)*i)

See denominator.

Returns zero.

Returns 0 if the value is positive, pi otherwise.

Returns 0 if the value is positive, pi otherwise.

Returns an array; [num, 0].

Returns an array; [num.abs, num.arg].

Returns self.

Search took: 5ms  ·  Total Results: 3794