Returns the value as a string for inspection.
Complex(2).inspect #=> "(2+0i)" Complex('-8/6').inspect #=> "((-4/3)+0i)" Complex('1/2i').inspect #=> "(0+(1/2)*i)" Complex(0, Float::INFINITY).inspect #=> "(0+Infinity*i)" Complex(Float::NAN, Float::NAN).inspect #=> "(NaN+NaN*i)"
Always returns the string “nil”.
Returns an array; [num, 0].
Returns self.
Returns self.
Returns the receiver. freeze
cannot be false
.
Returns self
if num
is not zero, nil
otherwise.
This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A ) b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
Returns num
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
Numeric
implements this by converting its value to a Float
and invoking Float#round
.
Returns true
if num
is greater than 0.
Returns true
if num
is less than 0.
Decodes str (which may contain binary data) according to the format string, returning an array of each value extracted. The format string consists of a sequence of single-character directives, summarized in the table at the end of this entry. Each directive may be followed by a number, indicating the number of times to repeat with this directive. An asterisk (“*
”) will use up all remaining elements. The directives sSiIlL
may each be followed by an underscore (“_
”) or exclamation mark (“!
”) to use the underlying platform’s native size for the specified type; otherwise, it uses a platform-independent consistent size. Spaces are ignored in the format string. See also String#unpack1
, Array#pack
.
"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "] "abc \0\0".unpack('a3a3') #=> ["abc", " \000\000"] "abc \0abc \0".unpack('Z*Z*') #=> ["abc ", "abc "] "aa".unpack('b8B8') #=> ["10000110", "01100001"] "aaa".unpack('h2H2c') #=> ["16", "61", 97] "\xfe\xff\xfe\xff".unpack('sS') #=> [-2, 65534] "now=20is".unpack('M*') #=> ["now is"] "whole".unpack('xax2aX2aX1aX2a') #=> ["h", "e", "l", "l", "o"]
This table summarizes the various formats and the Ruby classes returned by each.
Integer | | Directive | Returns | Meaning ------------------------------------------------------------------ C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) J | Integer | pointer width unsigned, native endian (uintptr_t) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) j | Integer | pointer width signed, native endian (intptr_t) | | S_ S! | Integer | unsigned short, native endian I I_ I! | Integer | unsigned int, native endian L_ L! | Integer | unsigned long, native endian Q_ Q! | Integer | unsigned long long, native endian (ArgumentError | | if the platform has no long long type.) J! | Integer | uintptr_t, native endian (same with J) | | s_ s! | Integer | signed short, native endian i i_ i! | Integer | signed int, native endian l_ l! | Integer | signed long, native endian q_ q! | Integer | signed long long, native endian (ArgumentError | | if the platform has no long long type.) j! | Integer | intptr_t, native endian (same with j) | | S> s> S!> s!> | Integer | same as the directives without ">" except L> l> L!> l!> | | big endian I!> i!> | | Q> q> Q!> q!> | | "S>" is same as "n" J> j> J!> j!> | | "L>" is same as "N" | | S< s< S!< s!< | Integer | same as the directives without "<" except L< l< L!< l!< | | little endian I!< i!< | | Q< q< Q!< q!< | | "S<" is same as "v" J< j< J!< j!< | | "L<" is same as "V" | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer (see Array#pack) Float | | Directive | Returns | Meaning ----------------------------------------------------------------- D d | Float | double-precision, native format F f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | Returns | Meaning ----------------------------------------------------------------- A | String | arbitrary binary string (remove trailing nulls and ASCII spaces) a | String | arbitrary binary string Z | String | null-terminated string B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted-printable, MIME encoding (see RFC2045) m | String | base64 encoded string (RFC 2045) (default) | | base64 encoded string (RFC 4648) if followed by 0 P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | Returns | Meaning ----------------------------------------------------------------- @ | --- | skip to the offset given by the length argument X | --- | skip backward one byte x | --- | skip forward one byte
HISTORY
J, J! j, and j! are available since Ruby 2.3.
Q_, Q!, q_, and q! are available since Ruby 2.1.
I!<, i!<, I!>, and i!> are available since Ruby 1.9.3.
Decodes str (which may contain binary data) according to the format string, returning the first value extracted. See also String#unpack
, Array#pack
.
Contrast with String#unpack
:
"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "] "abc \0\0abc \0\0".unpack1('A6Z6') #=> "abc"
In that case data would be lost but often it’s the case that the array only holds one value, especially when unpacking binary data. For instance:
“xffx00x00x00”.unpack(“l”) #=> [255] “xffx00x00x00”.unpack1(“l”) #=> 255
Thus unpack1 is convenient, makes clear the intention and signals the expected return value to those reading the code.
Returns a printable version of str, surrounded by quote marks, with special characters escaped.
str = "hello" str[3] = "\b" str.inspect #=> "\"hel\\bo\""
Returns a copy of str with all uppercase letters replaced with their lowercase counterparts. Which letters exactly are replaced, and by which other letters, depends on the presence or absence of options, and on the encoding
of the string.
The meaning of the options
is as follows:
Full Unicode case mapping, suitable for most languages (see :turkic and :lithuanian options below for exceptions). Context-dependent case mapping as described in Table 3-14 of the Unicode standard is currently not supported.
Only the ASCII region, i.e. the characters “A” to “Z” and “a” to “z”, are affected. This option cannot be combined with any other option.
Full Unicode case mapping, adapted for Turkic languages (Turkish, Azerbaijani, …). This means that upper case I is mapped to lower case dotless i, and so on.
Currently, just full Unicode case mapping. In the future, full Unicode case mapping adapted for Lithuanian (keeping the dot on the lower case i even if there is an accent on top).
Only available on downcase
and downcase!
. Unicode case folding, which is more far-reaching than Unicode case mapping. This option currently cannot be combined with any other option (i.e. there is currently no variant for turkic languages).
Please note that several assumptions that are valid for ASCII-only case conversions do not hold for more general case conversions. For example, the length of the result may not be the same as the length of the input (neither in characters nor in bytes), some roundtrip assumptions (e.g. str.downcase == str.upcase.downcase) may not apply, and Unicode normalization (i.e. String#unicode_normalize
) is not necessarily maintained by case mapping operations.
Non-ASCII case mapping/folding is currently supported for UTF-8, UTF-16BE/LE, UTF-32BE/LE, and ISO-8859-1~16 Strings/Symbols. This support will be extended to other encodings.
"hEllO".downcase #=> "hello"
Downcases the contents of str, returning nil
if no changes were made.
See String#downcase
for meaning of options
and use with different encodings.
Treats leading characters of str as a string of octal digits (with an optional sign) and returns the corresponding number. Returns 0 if the conversion fails.
"123".oct #=> 83 "-377".oct #=> -255 "bad".oct #=> 0 "0377bad".oct #=> 255
If str
starts with 0
, radix indicators are honored. See Kernel#Integer
.
Returns true
if str contains the given string or character.
"hello".include? "lo" #=> true "hello".include? "ol" #=> false "hello".include? ?h #=> true
Each other_str
parameter defines a set of characters to count. The intersection of these sets defines the characters to count in str
. Any other_str
that starts with a caret ^
is negated. The sequence c1-c2
means all characters between c1 and c2. The backslash character \
can be used to escape ^
or -
and is otherwise ignored unless it appears at the end of a sequence or the end of a other_str
.
a = "hello world" a.count "lo" #=> 5 a.count "lo", "o" #=> 2 a.count "hello", "^l" #=> 4 a.count "ej-m" #=> 4 "hello^world".count "\\^aeiou" #=> 4 "hello-world".count "a\\-eo" #=> 4 c = "hello world\\r\\n" c.count "\\" #=> 2 c.count "\\A" #=> 0 c.count "X-\\w" #=> 3
Returns float
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.4.round #=> 1 1.5.round #=> 2 1.6.round #=> 2 (-1.5).round #=> -2 1.234567.round(2) #=> 1.23 1.234567.round(3) #=> 1.235 1.234567.round(4) #=> 1.2346 1.234567.round(5) #=> 1.23457 34567.89.round(-5) #=> 0 34567.89.round(-4) #=> 30000 34567.89.round(-3) #=> 35000 34567.89.round(-2) #=> 34600 34567.89.round(-1) #=> 34570 34567.89.round(0) #=> 34568 34567.89.round(1) #=> 34567.9 34567.89.round(2) #=> 34567.89 34567.89.round(3) #=> 34567.89
If the optional half
keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode
:
:up
or nil
: round half away from zero (default)
:down
: round half toward zero
:even
: round half toward the nearest even number
2.5.round(half: :up) #=> 3 2.5.round(half: :down) #=> 2 2.5.round(half: :even) #=> 2 3.5.round(half: :up) #=> 4 3.5.round(half: :down) #=> 3 3.5.round(half: :even) #=> 4 (-2.5).round(half: :up) #=> -3 (-2.5).round(half: :down) #=> -2 (-2.5).round(half: :even) #=> -2
Returns true
if float
is greater than 0.
Returns true
if float
is less than 0.
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
Returns fiber information string.