Results for: "OptionParser"

Processes fields with @converters, or @header_converters if headers is passed as true, returning the converted field set. Any converter that changes the field into something other than a String halts the pipeline of conversion for that field. This is primarily an efficiency shortcut.

Serialization support for the object returned by _getobj_.

Reinitializes delegation from a serialized object.

Can be used to set eoutvar as described in ERB::new. It’s probably easier to just use the constructor though, since calling this method requires the setup of an ERB compiler object.

Set an error (a protected method).

Returns a string for DNS reverse lookup compatible with RFC3172.

No documentation available
No documentation available
No documentation available

Returns true if this is a lower triangular matrix.

Returns true if this is an upper triangular matrix.

Called for dup & clone.

Private. Use Matrix#determinant

Returns the determinant of the matrix, using Bareiss’ multistep integer-preserving gaussian elimination. It has the same computational cost order O(n^3) as standard Gaussian elimination. Intermediate results are fraction free and of lower complexity. A matrix of Integers will have thus intermediate results that are also Integers, with smaller bignums (if any), while a matrix of Float will usually have intermediate results with better precision.

No documentation available

Called for dup & clone.

Returns the factorization of value.

For an arbitrary integer:

p_1**e_1 * p_2**e_2 * ... * p_n**e_n,

prime_division returns an array of pairs of integers:

[[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].

Each pair consists of a prime number – a prime factor – and a natural number – its exponent (multiplicity).

Parameters

value

An arbitrary integer.

generator

Optional. A pseudo-prime generator. generator.succ must return the next pseudo-prime number in ascending order. It must generate all prime numbers, but may also generate non-prime numbers, too.

Exceptions

ZeroDivisionError

when value is zero.

Example

Prime.prime_division(45)  #=> [[3, 2], [5, 1]]
3**2 * 5                  #=> 45

Changes asynchronous interrupt timing.

interrupt means asynchronous event and corresponding procedure by Thread#raise, Thread#kill, signal trap (not supported yet) and main thread termination (if main thread terminates, then all other thread will be killed).

The given hash has pairs like ExceptionClass => :TimingSymbol. Where the ExceptionClass is the interrupt handled by the given block. The TimingSymbol can be one of the following symbols:

:immediate

Invoke interrupts immediately.

:on_blocking

Invoke interrupts while BlockingOperation.

:never

Never invoke all interrupts.

BlockingOperation means that the operation will block the calling thread, such as read and write. On CRuby implementation, BlockingOperation is any operation executed without GVL.

Masked asynchronous interrupts are delayed until they are enabled. This method is similar to sigprocmask(3).

NOTE

Asynchronous interrupts are difficult to use.

If you need to communicate between threads, please consider to use another way such as Queue.

Or use them with deep understanding about this method.

Usage

In this example, we can guard from Thread#raise exceptions.

Using the :never TimingSymbol the RuntimeError exception will always be ignored in the first block of the main thread. In the second ::handle_interrupt block we can purposefully handle RuntimeError exceptions.

th = Thread.new do
  Thread.handle_interrupt(RuntimeError => :never) {
    begin
      # You can write resource allocation code safely.
      Thread.handle_interrupt(RuntimeError => :immediate) {
        # ...
      }
    ensure
      # You can write resource deallocation code safely.
    end
  }
end
Thread.pass
# ...
th.raise "stop"

While we are ignoring the RuntimeError exception, it’s safe to write our resource allocation code. Then, the ensure block is where we can safely deallocate your resources.

Guarding from Timeout::Error

In the next example, we will guard from the Timeout::Error exception. This will help prevent from leaking resources when Timeout::Error exceptions occur during normal ensure clause. For this example we use the help of the standard library Timeout, from lib/timeout.rb

require 'timeout'
Thread.handle_interrupt(Timeout::Error => :never) {
  timeout(10){
    # Timeout::Error doesn't occur here
    Thread.handle_interrupt(Timeout::Error => :on_blocking) {
      # possible to be killed by Timeout::Error
      # while blocking operation
    }
    # Timeout::Error doesn't occur here
  }
}

In the first part of the timeout block, we can rely on Timeout::Error being ignored. Then in the Timeout::Error => :on_blocking block, any operation that will block the calling thread is susceptible to a Timeout::Error exception being raised.

Stack control settings

It’s possible to stack multiple levels of ::handle_interrupt blocks in order to control more than one ExceptionClass and TimingSymbol at a time.

Thread.handle_interrupt(FooError => :never) {
  Thread.handle_interrupt(BarError => :never) {
     # FooError and BarError are prohibited.
  }
}

Inheritance with ExceptionClass

All exceptions inherited from the ExceptionClass parameter will be considered.

Thread.handle_interrupt(Exception => :never) {
  # all exceptions inherited from Exception are prohibited.
}

Returns whether or not the asynchronous queue is empty.

Since Thread::handle_interrupt can be used to defer asynchronous events, this method can be used to determine if there are any deferred events.

If you find this method returns true, then you may finish :never blocks.

For example, the following method processes deferred asynchronous events immediately.

def Thread.kick_interrupt_immediately
  Thread.handle_interrupt(Object => :immediate) {
    Thread.pass
  }
end

If error is given, then check only for error type deferred events.

Usage

th = Thread.new{
  Thread.handle_interrupt(RuntimeError => :on_blocking){
    while true
      ...
      # reach safe point to invoke interrupt
      if Thread.pending_interrupt?
        Thread.handle_interrupt(Object => :immediate){}
      end
      ...
    end
  }
}
...
th.raise # stop thread

This example can also be written as the following, which you should use to avoid asynchronous interrupts.

flag = true
th = Thread.new{
  Thread.handle_interrupt(RuntimeError => :on_blocking){
    while true
      ...
      # reach safe point to invoke interrupt
      break if flag == false
      ...
    end
  }
}
...
flag = false # stop thread

Returns whether or not the asynchronous queue is empty for the target thread.

If error is given, then check only for error type deferred events.

See ::pending_interrupt? for more information.

Enters exclusive section.

Enters exclusive section and executes the block. Leaves the exclusive section automatically when the block exits. See example under MonitorMixin.

Initializes the MonitorMixin after being included in a class or when an object has been extended with the MonitorMixin

Insert text into the line at the current cursor position.

See GNU Readline’s rl_insert_text function.

Raises NotImplementedError if the using readline library does not support.

Returns true if the contents of a file a and a file b are identical.

FileUtils.compare_file('somefile', 'somefile')       #=> true
FileUtils.compare_file('/dev/null', '/dev/urandom')  #=> false

Returns true if the contents of a file a and a file b are identical.

FileUtils.compare_file('somefile', 'somefile')       #=> true
FileUtils.compare_file('/dev/null', '/dev/urandom')  #=> false
Search took: 4ms  ·  Total Results: 3794