Returns true if URI
is hierarchical.
URI
has components listed in order of decreasing significance from left to right, see RFC3986 tools.ietf.org/html/rfc3986 1.2.3.
require 'uri' uri = URI.parse("http://my.example.com/") uri.hierarchical? #=> true uri = URI.parse("mailto:joe@example.com") uri.hierarchical? #=> false
Returns extensions.
Setter for extensions val
.
Setter for headers v
.
Returns the conversion path of ec.
The result is an array of conversions.
ec = Encoding::Converter.new("ISO-8859-1", "EUC-JP", crlf_newline: true) p ec.convpath #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>], # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>], # "crlf_newline"]
Each element of the array is a pair of encodings or a string. A pair means an encoding conversion. A string means a decorator.
In the above example, [#<Encoding:ISO-8859-1>,
Convert source_string and return destination_string.
source_string is assumed as a part of source. i.e. :partial_input=>true is specified internally. finish method should be used last.
ec = Encoding::Converter.new("utf-8", "euc-jp") puts ec.convert("\u3042").dump #=> "\xA4\xA2" puts ec.finish.dump #=> "" ec = Encoding::Converter.new("euc-jp", "utf-8") puts ec.convert("\xA4").dump #=> "" puts ec.convert("\xA2").dump #=> "\xE3\x81\x82" puts ec.finish.dump #=> "" ec = Encoding::Converter.new("utf-8", "iso-2022-jp") puts ec.convert("\xE3").dump #=> "".force_encoding("ISO-2022-JP") puts ec.convert("\x81").dump #=> "".force_encoding("ISO-2022-JP") puts ec.convert("\x82").dump #=> "\e$B$\"".force_encoding("ISO-2022-JP") puts ec.finish.dump #=> "\e(B".force_encoding("ISO-2022-JP")
If a conversion error occur, Encoding::UndefinedConversionError
or Encoding::InvalidByteSequenceError
is raised. Encoding::Converter#convert
doesn’t supply methods to recover or restart from these exceptions. When you want to handle these conversion errors, use Encoding::Converter#primitive_convert
.
Creates a class to wrap the C union described by signature
.
MyUnion = union ['int i', 'char c']
Set
all the parameters.
Calls say
with msg
or the results of the block if really_verbose is true.
If object
is an Array object, returns object
.
Otherwise if object
responds to :to_ary
, calls object.to_ary
and returns the result.
Returns nil
if object
does not respond to :to_ary
Raises an exception unless object.to_ary
returns an Array object.
Replaces the content of self
with the content of other_array
; returns self
:
a = [:foo, 'bar', 2] a.replace(['foo', :bar, 3]) # => ["foo", :bar, 3]
Searches self
as described at method bsearch
, but returns the index of the found element instead of the element itself.
Returns the factorization of self
.
See Prime#prime_division
for more details.
If object
is a String object, returns object
.
Otherwise if object
responds to :to_str
, calls object.to_str
and returns the result.
Returns nil
if object
does not respond to :to_str
Raises an exception unless object.to_str
returns a String object.
Replaces the contents of str with the corresponding values in other_str.
s = "hello" #=> "hello" s.replace "world" #=> "world"
Returns an array of grapheme clusters in str. This is a shorthand for str.each_grapheme_cluster.to_a
.
If a block is given, which is a deprecated form, works the same as each_grapheme_cluster
.
Sets Fiber
scheduler for the current thread. If the scheduler is set, non-blocking fibers (created by Fiber.new
with blocking: false
, or by Fiber.schedule
) call that scheduler’s hook methods on potentially blocking operations, and the current thread will call scheduler’s close
method on finalization (allowing the scheduler to properly manage all non-finished fibers).
scheduler
can be an object of any class corresponding to Fiber::SchedulerInterface
. Its implementation is up to the user.
See also the “Non-blocking fibers” section in class docs.
Converts a pathname to an absolute pathname. Relative paths are referenced from the current working directory of the process unless dir_string
is given, in which case it will be used as the starting point. The given pathname may start with a “~
”, which expands to the process owner’s home directory (the environment variable HOME
must be set correctly). “~
user” expands to the named user’s home directory.
File.expand_path("~oracle/bin") #=> "/home/oracle/bin"
A simple example of using dir_string
is as follows.
File.expand_path("ruby", "/usr/bin") #=> "/usr/bin/ruby"
A more complex example which also resolves parent directory is as follows. Suppose we are in bin/mygem and want the absolute path of lib/mygem.rb.
File.expand_path("../../lib/mygem.rb", __FILE__) #=> ".../path/to/project/lib/mygem.rb"
So first it resolves the parent of __FILE__, that is bin/, then go to the parent, the root of the project and appends lib/mygem.rb
.
Returns whether ASCII-compatible or not.
Encoding::UTF_8.ascii_compatible? #=> true Encoding::UTF_16BE.ascii_compatible? #=> false
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
Return the number of seconds the specified time zone differs from UTC.
Numeric
time zones that include minutes, such as -10:00
or +1330
will work, as will simpler hour-only time zones like -10
or +13
.
Textual time zones listed in ZoneOffset are also supported.
If the time zone does not match any of the above, zone_offset
will check if the local time zone (both with and without potential Daylight Saving Time changes being in effect) matches zone
. Specifying a value for year
will change the year used to find the local time zone.
If zone_offset
is unable to determine the offset, nil will be returned.
require 'time' Time.zone_offset("EST") #=> -18000
You must require ‘time’ to use this method.