Inserts given objects
before or after the element at Integer index offset
; returns self
.
When index
is non-negative, inserts all given objects
before the element at offset index
:
a = [:foo, 'bar', 2] a.insert(1, :bat, :bam) # => [:foo, :bat, :bam, "bar", 2]
Extends the array if index
is beyond the array (index >= self.size
):
a = [:foo, 'bar', 2] a.insert(5, :bat, :bam) a # => [:foo, "bar", 2, nil, nil, :bat, :bam]
Does nothing if no objects given:
a = [:foo, 'bar', 2] a.insert(1) a.insert(50) a.insert(-50) a # => [:foo, "bar", 2]
When index
is negative, inserts all given objects
after the element at offset index+self.size
:
a = [:foo, 'bar', 2] a.insert(-2, :bat, :bam) a # => [:foo, "bar", :bat, :bam, 2]
Returns an element from self
selected by a binary search. self
should be sorted, but this is not checked.
By using binary search, finds a value from this array which meets the given condition in O(log n)
where n
is the size of the array.
There are two search modes:
Find-minimum mode: the block should return true
or false
.
Find-any mode: the block should return a numeric value.
The block should not mix the modes by and sometimes returning true
or false
and sometimes returning a numeric value, but this is not checked.
Find-Minimum Mode
In find-minimum mode, the block always returns true
or false
. The further requirement (though not checked) is that there are no indexes i
and j
such that:
0 <= i < j <= self.size
.
The block returns true
for self[i]
and false
for self[j]
.
In find-minimum mode, method bsearch returns the first element for which the block returns true.
Examples:
a = [0, 4, 7, 10, 12] a.bsearch {|x| x >= 4 } # => 4 a.bsearch {|x| x >= 6 } # => 7 a.bsearch {|x| x >= -1 } # => 0 a.bsearch {|x| x >= 100 } # => nil
Less formally: the block is such that all false
-evaluating elements precede all true
-evaluating elements.
These make sense as blocks in find-minimum mode:
a = [0, 4, 7, 10, 12] a.map {|x| x >= 4 } # => [false, true, true, true, true] a.map {|x| x >= 6 } # => [false, false, true, true, true] a.map {|x| x >= -1 } # => [true, true, true, true, true] a.map {|x| x >= 100 } # => [false, false, false, false, false]
This would not make sense:
a = [0, 4, 7, 10, 12] a.map {|x| x == 7 } # => [false, false, true, false, false]
Find-Any Mode
In find-any mode, the block always returns a numeric value. The further requirement (though not checked) is that there are no indexes i
and j
such that:
0 <= i < j <= self.size
.
The block returns a negative value for self[i]
and a positive value for self[j]
.
The block returns a negative value for self[i]
and zero self[j]
.
The block returns zero for self[i]
and a positive value for self[j]
.
In find-any mode, method bsearch returns some element for which the block returns zero, or nil
if no such element is found.
Examples:
a = [0, 4, 7, 10, 12] a.bsearch {|element| 7 <=> element } # => 7 a.bsearch {|element| -1 <=> element } # => nil a.bsearch {|element| 5 <=> element } # => nil a.bsearch {|element| 15 <=> element } # => nil
Less formally: the block is such that:
All positive-evaluating elements precede all zero-evaluating elements.
All positive-evaluating elements precede all negative-evaluating elements.
All zero-evaluating elements precede all negative-evaluating elements.
These make sense as blocks in find-any mode:
a = [0, 4, 7, 10, 12] a.map {|element| 7 <=> element } # => [1, 1, 0, -1, -1] a.map {|element| -1 <=> element } # => [-1, -1, -1, -1, -1] a.map {|element| 5 <=> element } # => [1, 1, -1, -1, -1] a.map {|element| 15 <=> element } # => [1, 1, 1, 1, 1]
This would not make sense:
a = [0, 4, 7, 10, 12] a.map {|element| element <=> 7 } # => [-1, -1, 0, 1, 1]
Returns an enumerator if no block given:
a = [0, 4, 7, 10, 12] a.bsearch # => #<Enumerator: [0, 4, 7, 10, 12]:bsearch>
Returns self
if num
is not zero, nil
otherwise.
This behavior is useful when chaining comparisons:
a = %w( z Bb bB bb BB a aA Aa AA A ) b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
Decodes str (which may contain binary data) according to the format string, returning an array of each value extracted. The format string consists of a sequence of single-character directives, summarized in the table at the end of this entry. Each directive may be followed by a number, indicating the number of times to repeat with this directive. An asterisk (“*
”) will use up all remaining elements. The directives sSiIlL
may each be followed by an underscore (“_
”) or exclamation mark (“!
”) to use the underlying platform’s native size for the specified type; otherwise, it uses a platform-independent consistent size. Spaces are ignored in the format string. See also String#unpack1
, Array#pack
.
"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "] "abc \0\0".unpack('a3a3') #=> ["abc", " \000\000"] "abc \0abc \0".unpack('Z*Z*') #=> ["abc ", "abc "] "aa".unpack('b8B8') #=> ["10000110", "01100001"] "aaa".unpack('h2H2c') #=> ["16", "61", 97] "\xfe\xff\xfe\xff".unpack('sS') #=> [-2, 65534] "now=20is".unpack('M*') #=> ["now is"] "whole".unpack('xax2aX2aX1aX2a') #=> ["h", "e", "l", "l", "o"]
This table summarizes the various formats and the Ruby classes returned by each.
Integer | | Directive | Returns | Meaning ------------------------------------------------------------------ C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) J | Integer | pointer width unsigned, native endian (uintptr_t) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) j | Integer | pointer width signed, native endian (intptr_t) | | S_ S! | Integer | unsigned short, native endian I I_ I! | Integer | unsigned int, native endian L_ L! | Integer | unsigned long, native endian Q_ Q! | Integer | unsigned long long, native endian (ArgumentError | | if the platform has no long long type.) J! | Integer | uintptr_t, native endian (same with J) | | s_ s! | Integer | signed short, native endian i i_ i! | Integer | signed int, native endian l_ l! | Integer | signed long, native endian q_ q! | Integer | signed long long, native endian (ArgumentError | | if the platform has no long long type.) j! | Integer | intptr_t, native endian (same with j) | | S> s> S!> s!> | Integer | same as the directives without ">" except L> l> L!> l!> | | big endian I!> i!> | | Q> q> Q!> q!> | | "S>" is same as "n" J> j> J!> j!> | | "L>" is same as "N" | | S< s< S!< s!< | Integer | same as the directives without "<" except L< l< L!< l!< | | little endian I!< i!< | | Q< q< Q!< q!< | | "S<" is same as "v" J< j< J!< j!< | | "L<" is same as "V" | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer (see Array#pack) Float | | Directive | Returns | Meaning ----------------------------------------------------------------- D d | Float | double-precision, native format F f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | Returns | Meaning ----------------------------------------------------------------- A | String | arbitrary binary string (remove trailing nulls and ASCII spaces) a | String | arbitrary binary string Z | String | null-terminated string B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted-printable, MIME encoding (see RFC2045) m | String | base64 encoded string (RFC 2045) (default) | | base64 encoded string (RFC 4648) if followed by 0 P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | Returns | Meaning ----------------------------------------------------------------- @ | --- | skip to the offset given by the length argument X | --- | skip backward one byte x | --- | skip forward one byte
HISTORY
J, J! j, and j! are available since Ruby 2.3.
Q_, Q!, q_, and q! are available since Ruby 2.1.
I!<, i!<, I!>, and i!> are available since Ruby 1.9.3.
Decodes str (which may contain binary data) according to the format string, returning the first value extracted. See also String#unpack
, Array#pack
.
Contrast with String#unpack
:
"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "] "abc \0\0abc \0\0".unpack1('A6Z6') #=> "abc"
In that case data would be lost but often it’s the case that the array only holds one value, especially when unpacking binary data. For instance:
“xffx00x00x00”.unpack(“l”) #=> [255] “xffx00x00x00”.unpack1(“l”) #=> 255
Thus unpack1 is convenient, makes clear the intention and signals the expected return value to those reading the code.
Inserts the given other_string
into self
; returns self
.
If the Integer index
is positive, inserts other_string
at offset index
:
'foo'.insert(1, 'bar') # => "fbaroo"
If the Integer index
is negative, counts backward from the end of self
and inserts other_string
at offset index+1
(that is, after self[index]
):
'foo'.insert(-2, 'bar') # => "fobaro"
Returns an array of characters in str. This is a shorthand for str.each_char.to_a
.
If a block is given, which is a deprecated form, works the same as each_char
.
Checks the compatibility of two objects.
If the objects are both strings they are compatible when they are concatenatable. The encoding of the concatenated string will be returned if they are compatible, nil if they are not.
Encoding.compatible?("\xa1".force_encoding("iso-8859-1"), "b") #=> #<Encoding:ISO-8859-1> Encoding.compatible?( "\xa1".force_encoding("iso-8859-1"), "\xa1\xa1".force_encoding("euc-jp")) #=> nil
If the objects are non-strings their encodings are compatible when they have an encoding and:
Either encoding is US-ASCII compatible
One of the encodings is a 7-bit encoding
Returns the number of decimal digits in this number.
Example:
BigDecimal("0").precision # => 0 BigDecimal("1").precision # => 1 BigDecimal("-1e20").precision # => 21 BigDecimal("1e-20").precision # => 20 BigDecimal("Infinity").precision # => 0 BigDecimal("-Infinity").precision # => 0 BigDecimal("NaN").precision # => 0
Returns self if the value is non-zero, nil otherwise.
Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.
Date._strptime('2001-02-03', '%Y-%m-%d') #=> {:year=>2001, :mon=>2, :mday=>3}
See also strptime(3) and strftime
.
Parses the given representation of date and time with the given template, and creates a date object. strptime does not support specification of flags and width unlike strftime.
Date.strptime('2001-02-03', '%Y-%m-%d') #=> #<Date: 2001-02-03 ...> Date.strptime('03-02-2001', '%d-%m-%Y') #=> #<Date: 2001-02-03 ...> Date.strptime('2001-034', '%Y-%j') #=> #<Date: 2001-02-03 ...> Date.strptime('2001-W05-6', '%G-W%V-%u') #=> #<Date: 2001-02-03 ...> Date.strptime('2001 04 6', '%Y %U %w') #=> #<Date: 2001-02-03 ...> Date.strptime('2001 05 6', '%Y %W %u') #=> #<Date: 2001-02-03 ...> Date.strptime('sat3feb01', '%a%d%b%y') #=> #<Date: 2001-02-03 ...>
See also strptime(3) and strftime
.
Parses the given representation of date and time with the given template, and returns a hash of parsed elements. _strptime does not support specification of flags and width unlike strftime.
See also strptime(3) and strftime
.
Parses the given representation of date and time with the given template, and creates a DateTime
object. strptime does not support specification of flags and width unlike strftime.
DateTime.strptime('2001-02-03T04:05:06+07:00', '%Y-%m-%dT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('03-02-2001 04:05:06 PM', '%d-%m-%Y %I:%M:%S %p') #=> #<DateTime: 2001-02-03T16:05:06+00:00 ...> DateTime.strptime('2001-W05-6T04:05:06+07:00', '%G-W%V-%uT%H:%M:%S%z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 04 6 04 05 06 +7', '%Y %U %w %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('2001 05 6 04 05 06 +7', '%Y %W %u %H %M %S %z') #=> #<DateTime: 2001-02-03T04:05:06+07:00 ...> DateTime.strptime('-1', '%s') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('-1000', '%Q') #=> #<DateTime: 1969-12-31T23:59:59+00:00 ...> DateTime.strptime('sat3feb014pm+7', '%a%d%b%y%H%p%z') #=> #<DateTime: 2001-02-03T16:00:00+07:00 ...>
See also strptime(3) and strftime
.
Works similar to parse
except that instead of using a heuristic to detect the format of the input string, you provide a second argument that describes the format of the string.
If a block is given, the year described in date
is converted by the block. For example:
Time.strptime(...) {|y| y < 100 ? (y >= 69 ? y + 1900 : y + 2000) : y}
Below is a list of the formatting options:
The abbreviated weekday name (“Sun”)
The full weekday name (“Sunday”)
The abbreviated month name (“Jan”)
The full month name (“January”)
The preferred local date and time representation
Century (20 in 2009)
Day of the month (01..31)
Date
(%m/%d/%y)
Day of the month, blank-padded ( 1..31)
Equivalent to %Y-%m-%d (the ISO 8601 date format)
The last two digits of the commercial year
The week-based year according to ISO-8601 (week 1 starts on Monday and includes January 4)
Equivalent to %b
Hour of the day, 24-hour clock (00..23)
Hour of the day, 12-hour clock (01..12)
Day of the year (001..366)
hour, 24-hour clock, blank-padded ( 0..23)
hour, 12-hour clock, blank-padded ( 0..12)
Millisecond of the second (000..999)
Month of the year (01..12)
Minute of the hour (00..59)
Newline (n)
Fractional seconds digits
Meridian indicator (“AM” or “PM”)
Meridian indicator (“am” or “pm”)
time, 12-hour (same as %I:%M:%S %p)
time, 24-hour (%H:%M)
Number of seconds since 1970-01-01 00:00:00 UTC.
Second of the minute (00..60)
Tab character (t)
time, 24-hour (%H:%M:%S)
Day of the week as a decimal, Monday being 1. (1..7)
Week number of the current year, starting with the first Sunday as the first day of the first week (00..53)
VMS date (%e-%b-%Y)
Week number of year according to ISO 8601 (01..53)
Week number of the current year, starting with the first Monday as the first day of the first week (00..53)
Day of the week (Sunday is 0, 0..6)
Preferred representation for the date alone, no time
Preferred representation for the time alone, no date
Year without a century (00..99)
Year which may include century, if provided
Time
zone as hour offset from UTC (e.g. +0900)
Time
zone name
Literal “%” character
date(1) (%a %b %e %H:%M:%S %Z %Y)
require 'time' Time.strptime("2000-10-31", "%Y-%m-%d") #=> 2000-10-31 00:00:00 -0500
You must require ‘time’ to use this method.
Returns the struct members as an array of symbols:
Customer = Struct.new(:name, :address, :zip) joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345) joe.members #=> [:name, :address, :zip]
Returns pathname configuration variable using fpathconf().
name should be a constant under Etc
which begins with PC_
.
The return value is an integer or nil. nil means indefinite limit. (fpathconf() returns -1 but errno is not set.)
require 'etc' IO.pipe {|r, w| p w.pathconf(Etc::PC_PIPE_BUF) #=> 4096 }
By using binary search, finds a value in range which meets the given condition in O(log n) where n is the size of the range.
You can use this method in two use cases: a find-minimum mode and a find-any mode. In either case, the elements of the range must be monotone (or sorted) with respect to the block.
In find-minimum mode (this is a good choice for typical use case), the block must return true or false, and there must be a value x so that:
the block returns false for any value which is less than x, and
the block returns true for any value which is greater than or equal to x.
If x is within the range, this method returns the value x. Otherwise, it returns nil.
ary = [0, 4, 7, 10, 12] (0...ary.size).bsearch {|i| ary[i] >= 4 } #=> 1 (0...ary.size).bsearch {|i| ary[i] >= 6 } #=> 2 (0...ary.size).bsearch {|i| ary[i] >= 8 } #=> 3 (0...ary.size).bsearch {|i| ary[i] >= 100 } #=> nil (0.0...Float::INFINITY).bsearch {|x| Math.log(x) >= 0 } #=> 1.0
In find-any mode (this behaves like libc’s bsearch(3)), the block must return a number, and there must be two values x and y (x <= y) so that:
the block returns a positive number for v if v < x,
the block returns zero for v if x <= v < y, and
the block returns a negative number for v if y <= v.
This method returns any value which is within the intersection of the given range and x…y (if any). If there is no value that satisfies the condition, it returns nil.
ary = [0, 100, 100, 100, 200] (0..4).bsearch {|i| 100 - ary[i] } #=> 1, 2 or 3 (0..4).bsearch {|i| 300 - ary[i] } #=> nil (0..4).bsearch {|i| 50 - ary[i] } #=> nil
You must not mix the two modes at a time; the block must always return either true/false, or always return a number. It is undefined which value is actually picked up at each iteration.
Return a Regexp
object that is the union of the given patterns, i.e., will match any of its parts. The patterns can be Regexp
objects, in which case their options will be preserved, or Strings. If no patterns are given, returns /(?!)/
. The behavior is unspecified if any given pattern contains capture.
Regexp.union #=> /(?!)/ Regexp.union("penzance") #=> /penzance/ Regexp.union("a+b*c") #=> /a\+b\*c/ Regexp.union("skiing", "sledding") #=> /skiing|sledding/ Regexp.union(["skiing", "sledding"]) #=> /skiing|sledding/ Regexp.union(/dogs/, /cats/i) #=> /(?-mix:dogs)|(?i-mx:cats)/
Note: the arguments for ::union
will try to be converted into a regular expression literal via to_regexp.
Returns clean pathname of self
with consecutive slashes and useless dots removed. The filesystem is not accessed.
If consider_symlink
is true
, then a more conservative algorithm is used to avoid breaking symbolic linkages. This may retain more ..
entries than absolutely necessary, but without accessing the filesystem, this can’t be avoided.
See Pathname#realpath
.
Returns an array of interface addresses. An element of the array is an instance of Socket::Ifaddr
.
This method can be used to find multicast-enabled interfaces:
pp Socket.getifaddrs.reject {|ifaddr| !ifaddr.addr.ip? || (ifaddr.flags & Socket::IFF_MULTICAST == 0) }.map {|ifaddr| [ifaddr.name, ifaddr.ifindex, ifaddr.addr] } #=> [["eth0", 2, #<Addrinfo: 221.186.184.67>], # ["eth0", 2, #<Addrinfo: fe80::216:3eff:fe95:88bb%eth0>]]
Example result on GNU/Linux:
pp Socket.getifaddrs #=> [#<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 PACKET[protocol=0 lo hatype=772 HOST hwaddr=00:00:00:00:00:00]>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=00:16:3e:95:88:bb] broadcast=PACKET[protocol=0 eth0 hatype=1 HOST hwaddr=ff:ff:ff:ff:ff:ff]>, # #<Socket::Ifaddr sit0 NOARP PACKET[protocol=0 sit0 hatype=776 HOST hwaddr=00:00:00:00]>, # #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 127.0.0.1 netmask=255.0.0.0>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 221.186.184.67 netmask=255.255.255.240 broadcast=221.186.184.79>, # #<Socket::Ifaddr lo UP,LOOPBACK,RUNNING,0x10000 ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>, # #<Socket::Ifaddr eth0 UP,BROADCAST,RUNNING,MULTICAST,0x10000 fe80::216:3eff:fe95:88bb%eth0 netmask=ffff:ffff:ffff:ffff::>]
Example result on FreeBSD:
pp Socket.getifaddrs #=> [#<Socket::Ifaddr usbus0 UP,0x10000 LINK[usbus0]>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 LINK[re0 3a:d0:40:9a:fe:e8]>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 10.250.10.18 netmask=255.255.255.? (7 bytes for 16 bytes sockaddr_in) broadcast=10.250.10.255>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 fe80:2::38d0:40ff:fe9a:fee8 netmask=ffff:ffff:ffff:ffff::>, # #<Socket::Ifaddr re0 UP,BROADCAST,RUNNING,MULTICAST,0x800 2001:2e8:408:10::12 netmask=UNSPEC>, # #<Socket::Ifaddr plip0 POINTOPOINT,MULTICAST,0x800 LINK[plip0]>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST LINK[lo0]>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST ::1 netmask=ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST fe80:4::1 netmask=ffff:ffff:ffff:ffff::>, # #<Socket::Ifaddr lo0 UP,LOOPBACK,RUNNING,MULTICAST 127.0.0.1 netmask=255.?.?.? (5 bytes for 16 bytes sockaddr_in)>]