Duplicates array_attributes
from other_spec
so state isn’t shared.
Sets the rubygems_version
to the current RubyGems version.
Constructs the default Hash
of Regexp’s.
Constructs the default Hash
of Regexp’s.
Returns a conversion path.
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP") #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>], # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]] p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true) or p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal) #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>], # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>], # "universal_newline"] p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true) or p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal) #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>], # "universal_newline", # [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]
primitive_errinfo
returns important information regarding the last error as a 5-element array:
[result, enc1, enc2, error_bytes, readagain_bytes]
result is the last result of primitive_convert.
Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.
enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].
error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.
Example:
# \xff is invalid as EUC-JP. ec = Encoding::Converter.new("EUC-JP", "Shift_JIS") ec.primitive_convert(src="\xff", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""] # HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1. # Since this error is occur in UTF-8 to ISO-8859-1 conversion, # error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82). ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10) p ec.primitive_errinfo #=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""] # partial character is invalid ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4", dst="", nil, 10) p ec.primitive_errinfo #=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""] # Encoding::Converter::PARTIAL_INPUT prevents invalid errors by # partial characters. ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1") ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT) p ec.primitive_errinfo #=> [:source_buffer_empty, nil, nil, nil, nil] # \xd8\x00\x00@ is invalid as UTF-16BE because # no low surrogate after high surrogate (\xd8\x00). # It is detected by 3rd byte (\00) which is part of next character. # So the high surrogate (\xd8\x00) is discarded and # the 3rd byte is read again later. # Since the byte is buffered in ec, it is dropped from src. ec = Encoding::Converter.new("UTF-16BE", "UTF-8") ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"] p src #=> "@" # Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE. # The problem is detected by 4th byte. ec = Encoding::Converter.new("UTF-16LE", "UTF-8") ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10) p ec.primitive_errinfo #=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"] p src #=> ""
A wrapper class to use a StringIO
object as the body and switch to a TempFile when the passed threshold is passed. Initialize the data from the query.
Handles multipart forms (in particular, forms that involve file uploads). Reads query parameters in the @params field, and cookies into @cookies.
Enumerates the trusted certificates via Gem::Security::TrustDir
.
Perform hostname verification following RFC 6125.
This method MUST be called after calling connect
to ensure that the hostname of a remote peer has been verified.
Create an exception with class klass
and message
Determines whether there was an error and raises the appropriate error based on the reply code of the response
Add the install/update options to the option parser.
Add local/remote options to the command line parser.
Add the –bulk-threshold option
Add the –update-sources option
Returns all certificate IDs in this request.
Returns the CertificateId
for which this SingleResponse
is.
Determines whether the response received was a Positive Intermediate reply (3xx reply code)
Defines the callback of event. If you want modify argument in callback, you could use this method instead of WIN32OLE_EVENT#on_event
.
ie = WIN32OLE.new('InternetExplorer.Application') ev = WIN32OLE_EVENT.new(ie) ev.on_event_with_outargs('BeforeNavigate2') {|*args| args.last[6] = true }