Register an event handler p
which is called every time a line in file_name
is executed.
Example:
Tracer.set_get_line_procs("example.rb", lambda { |line| puts "line number executed is #{line}" })
Invoked by Process::Status.wait
in order to wait for a specified process. See that method description for arguments description.
Suggested minimal implementation:
Thread.new do Process::Status.wait(pid, flags) end.value
This hook is optional: if it is not present in the current scheduler, Process::Status.wait
will behave as a blocking method.
Expected to returns a Process::Status
instance.
Sets the minimum and maximum supported protocol versions. See min_version=
and max_version=
.
Stop tracing object allocations.
Note that if ::trace_object_allocations_start
is called n-times, then tracing will stop after calling ::trace_object_allocations_stop
n-times.
Sets the process title that appears on the ps(1) command. Not necessarily effective on all platforms. No exception will be raised regardless of the result, nor will NotImplementedError
be raised even if the platform does not support the feature.
Calling this method does not affect the value of $0.
Process.setproctitle('myapp: worker #%d' % worker_id)
This method first appeared in Ruby 2.1 to serve as a global variable free means to change the process title.
Returns the number of online processors.
The result is intended as the number of processes to use all available processors.
This method is implemented using:
sched_getaffinity(): Linux
sysconf(_SC_NPROCESSORS_ONLN): GNU/Linux, NetBSD, FreeBSD, OpenBSD, DragonFly BSD, OpenIndiana, Mac OS X, AIX
Example:
require 'etc' p Etc.nprocessors #=> 4
The result might be smaller number than physical cpus especially when ruby process is bound to specific cpus. This is intended for getting better parallel processing.
Example: (Linux)
linux$ taskset 0x3 ./ruby -retc -e "p Etc.nprocessors" #=> 2
Gets the scheduling priority for specified process, process group, or user. kind indicates the kind of entity to find: one of Process::PRIO_PGRP
, Process::PRIO_USER
, or Process::PRIO_PROCESS
. integer is an id indicating the particular process, process group, or user (an id of 0 means current). Lower priorities are more favorable for scheduling. Not available on all platforms.
Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
See Process.getpriority
.
Process.setpriority(Process::PRIO_USER, 0, 19) #=> 0 Process.setpriority(Process::PRIO_PROCESS, 0, 19) #=> 0 Process.getpriority(Process::PRIO_USER, 0) #=> 19 Process.getpriority(Process::PRIO_PROCESS, 0) #=> 19
Initializes the supplemental group access list by reading the system group database and using all groups of which the given user is a member. The group with the specified gid is also added to the list. Returns the resulting Array
of the gids of all the groups in the supplementary group access list. Not available on all platforms.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.initgroups( "mgranger", 30 ) #=> [30, 6, 10, 11] Process.groups #=> [30, 6, 10, 11]
Get an Array
of the group IDs in the supplemental group access list for this process.
Process.groups #=> [27, 6, 10, 11]
Note that this method is just a wrapper of getgroups(2). This means that the following characteristics of the result completely depend on your system:
the result is sorted
the result includes effective GIDs
the result does not include duplicated GIDs
You can make sure to get a sorted unique GID
list of the current process by this expression:
Process.groups.uniq.sort
Set
the supplemental group access list to the given Array
of group IDs.
Process.groups #=> [0, 1, 2, 3, 4, 6, 10, 11, 20, 26, 27] Process.groups = [27, 6, 10, 11] #=> [27, 6, 10, 11] Process.groups #=> [27, 6, 10, 11]
Returns the maximum number of gids allowed in the supplemental group access list.
Process.maxgroups #=> 32
Sets the maximum number of gids allowed in the supplemental group access list.
Returns the cross product of this vector with the others.
Vector[1, 0, 0].cross_product Vector[0, 1, 0] # => Vector[0, 0, 1]
It is generalized to other dimensions to return a vector perpendicular to the arguments.
Vector[1, 2].cross_product # => Vector[-2, 1] Vector[1, 0, 0, 0].cross_product( Vector[0, 1, 0, 0], Vector[0, 0, 1, 0] ) #=> Vector[0, 0, 0, 1]
Computes and returns or yields all combinations of elements from all the Arrays, including both self
and other_arrays
.
The number of combinations is the product of the sizes of all the arrays, including both self
and other_arrays
.
The order of the returned combinations is indeterminate.
When no block is given, returns the combinations as an Array of Arrays:
a = [0, 1, 2] a1 = [3, 4] a2 = [5, 6] p = a.product(a1) p.size # => 6 # a.size * a1.size p # => [[0, 3], [0, 4], [1, 3], [1, 4], [2, 3], [2, 4]] p = a.product(a1, a2) p.size # => 12 # a.size * a1.size * a2.size p # => [[0, 3, 5], [0, 3, 6], [0, 4, 5], [0, 4, 6], [1, 3, 5], [1, 3, 6], [1, 4, 5], [1, 4, 6], [2, 3, 5], [2, 3, 6], [2, 4, 5], [2, 4, 6]]
If any argument is an empty Array, returns an empty Array.
If no argument is given, returns an Array of 1-element Arrays, each containing an element of self
:
a.product # => [[0], [1], [2]]
When a block is given, yields each combination as an Array; returns self
:
a.product(a1) {|combination| p combination }
Output:
[0, 3] [0, 4] [1, 3] [1, 4] [2, 3] [2, 4]
If any argument is an empty Array, does not call the block:
a.product(a1, a2, []) {|combination| fail 'Cannot happen' }
If no argument is given, yields each element of self
as a 1-element Array:
a.product {|combination| p combination }
Output:
[0] [1] [2]