Results for: "String# "

No documentation available

Performs a Miller-Rabin primality test. This is same as prime? except this first attempts trial divisions with some small primes.

Parameters

Called with encoding when the YAML stream starts. This method is called once per stream. A stream may contain multiple documents.

See the constants in Psych::Parser for the possible values of encoding.

Called when a map starts.

anchor is the anchor associated with the map or nil. tag is the tag associated with the map or nil. implicit is a boolean indicating whether or not the map was implicitly started. style is an integer indicating the mapping style.

See the constants in Psych::Nodes::Mapping for the possible values of style.

Example

Here is a YAML document that exercises most of the possible ways this method can be called:

---
k: !!map { hello: world }
v: &pewpew
  hello: world

The above YAML document consists of three maps, an outer map that contains two inner maps. Below is a matrix of the parameters sent in order to represent these three maps:

# anchor    tag                       implicit  style
[nil,       nil,                      true,     1     ]
[nil,       "tag:yaml.org,2002:map",  false,    2     ]
["pewpew",  nil,                      true,     1     ]
No documentation available

Start a stream emission with encoding

See Psych::Handler#start_stream

Start emitting a YAML map with anchor, tag, an implicit start and end, and style.

See Psych::Handler#start_mapping

No documentation available
No documentation available

Looks up RingServers waiting timeout seconds. RingServers will be given block as a callback, which will be called with the remote TupleSpace.

Install generated indices into the destination directory.

No documentation available

returns an integer in (-infty, 0] a number closer to 0 means the dependency is less constraining

dependencies w/ 0 or 1 possibilities (ignoring version requirements) are given very negative values, so they always sort first, before dependencies that are unconstrained

No documentation available

primitive_errinfo returns important information regarding the last error as a 5-element array:

[result, enc1, enc2, error_bytes, readagain_bytes]

result is the last result of primitive_convert.

Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.

enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].

error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.

Example:

# \xff is invalid as EUC-JP.
ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
ec.primitive_convert(src="\xff", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""]

# HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
# Since this error is occur in UTF-8 to ISO-8859-1 conversion,
# error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]

# partial character is invalid
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]

# Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
# partial characters.
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT)
p ec.primitive_errinfo
#=> [:source_buffer_empty, nil, nil, nil, nil]

# \xd8\x00\x00@ is invalid as UTF-16BE because
# no low surrogate after high surrogate (\xd8\x00).
# It is detected by 3rd byte (\00) which is part of next character.
# So the high surrogate (\xd8\x00) is discarded and
# the 3rd byte is read again later.
# Since the byte is buffered in ec, it is dropped from src.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"]
p src
#=> "@"

# Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE.
# The problem is detected by 4th byte.
ec = Encoding::Converter.new("UTF-16LE", "UTF-8")
ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"]
p src
#=> ""
No documentation available

Temporarily turn off warnings. Intended for tests only.

Temporarily turn off warnings. Intended for tests only.

No documentation available

Default options for the gem install command.

If the ordering field is missing, or if the ordering field is present and set to false, then the genTime field only indicates the time at which the time-stamp token has been created by the TSA. In such a case, the ordering of time-stamp tokens issued by the same TSA or different TSAs is only possible when the difference between the genTime of the first time-stamp token and the genTime of the second time-stamp token is greater than the sum of the accuracies of the genTime for each time-stamp token.

If the ordering field is present and set to true, every time-stamp token from the same TSA can always be ordered based on the genTime field, regardless of the genTime accuracy.

No documentation available

Returns value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError exception is raised. If you can’t access member variable of VT_RECORD OLE object directly, use this method.

If COM server in VB.NET ComServer project is the following:

Imports System.Runtime.InteropServices
Public Class ComClass
    Public Structure ComObject
        Public object_id As Ineger
    End Structure
End Class

and Ruby Object class has title attribute:

then accessing object_id of ComObject from Ruby is as the following:

srver = WIN32OLE.new('ComServer.ComClass')
obj = WIN32OLE_RECORD.new('ComObject', server)
# obj.object_id returns Ruby Object#object_id
obj.ole_instance_variable_get(:object_id) # => nil

Sets value specified by the member name of VT_RECORD OLE object. If the member name is not correct, KeyError exception is raised. If you can’t set value of member of VT_RECORD OLE object directly, use this method.

If COM server in VB.NET ComServer project is the following:

Imports System.Runtime.InteropServices
Public Class ComClass
    <MarshalAs(UnmanagedType.BStr)> _
    Public title As String
    Public cost As Integer
End Class

then setting value of the ‘title’ member is as following:

srver = WIN32OLE.new('ComServer.ComClass')
obj = WIN32OLE_RECORD.new('Book', server)
obj.ole_instance_variable_set(:title, "The Ruby Book")

The iterator version of the strongly_connected_components method. obj.each_strongly_connected_component is similar to obj.strongly_connected_components.each, but modification of obj during the iteration may lead to unexpected results.

each_strongly_connected_component returns nil.

class G
  include TSort
  def initialize(g)
    @g = g
  end
  def tsort_each_child(n, &b) @g[n].each(&b) end
  def tsort_each_node(&b) @g.each_key(&b) end
end

graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
graph.each_strongly_connected_component {|scc| p scc }
#=> [4]
#   [2]
#   [3]
#   [1]

graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
graph.each_strongly_connected_component {|scc| p scc }
#=> [4]
#   [2, 3]
#   [1]
Search took: 2ms  ·  Total Results: 2582