Results for: "module_function"

No documentation available

DOC: This method needs documented or nodoc’d

Sanitize a single string.

No documentation available

List of dependencies that are used for development

Duplicates array_attributes from other_spec so state isn’t shared.

Checks if this specification meets the requirement of dependency.

No documentation available

Uninstalls gem spec

No documentation available

Returns an Array of the components defined from the COMPONENT Array.

Constructs the default Hash of patterns.

Constructs the default Hash of Regexp’s.

Constructs the default Hash of patterns.

Constructs the default Hash of Regexp’s.

No documentation available
No documentation available

Returns a conversion path.

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP")
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]]

p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
#    "universal_newline"]

p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true)
or
p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal)
#=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
#    "universal_newline",
#    [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]

primitive_errinfo returns important information regarding the last error as a 5-element array:

[result, enc1, enc2, error_bytes, readagain_bytes]

result is the last result of primitive_convert.

Other elements are only meaningful when result is :invalid_byte_sequence, :incomplete_input or :undefined_conversion.

enc1 and enc2 indicate a conversion step as a pair of strings. For example, a converter from EUC-JP to ISO-8859-1 converts a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1. So [enc1, enc2] is either [“EUC-JP”, “UTF-8”] or [“UTF-8”, “ISO-8859-1”].

error_bytes and readagain_bytes indicate the byte sequences which caused the error. error_bytes is discarded portion. readagain_bytes is buffered portion which is read again on next conversion.

Example:

# \xff is invalid as EUC-JP.
ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
ec.primitive_convert(src="\xff", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""]

# HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
# Since this error is occur in UTF-8 to ISO-8859-1 conversion,
# error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]

# partial character is invalid
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]

# Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
# partial characters.
ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
ec.primitive_convert(src="\xa4", dst="", nil, 10, Encoding::Converter::PARTIAL_INPUT)
p ec.primitive_errinfo
#=> [:source_buffer_empty, nil, nil, nil, nil]

# \xd8\x00\x00@ is invalid as UTF-16BE because
# no low surrogate after high surrogate (\xd8\x00).
# It is detected by 3rd byte (\00) which is part of next character.
# So the high surrogate (\xd8\x00) is discarded and
# the 3rd byte is read again later.
# Since the byte is buffered in ec, it is dropped from src.
ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
ec.primitive_convert(src="\xd8\x00\x00@", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16BE", "UTF-8", "\xD8\x00", "\x00"]
p src
#=> "@"

# Similar to UTF-16BE, \x00\xd8@\x00 is invalid as UTF-16LE.
# The problem is detected by 4th byte.
ec = Encoding::Converter.new("UTF-16LE", "UTF-8")
ec.primitive_convert(src="\x00\xd8@\x00", dst="", nil, 10)
p ec.primitive_errinfo
#=> [:invalid_byte_sequence, "UTF-16LE", "UTF-8", "\x00\xD8", "@\x00"]
p src
#=> ""

Synonym for CGI.unescapeHTML(str)

Given a String of C type ty, returns the corresponding Fiddle constant.

ty can also accept an Array of C type Strings, and will be returned in a corresponding Array.

If Hash tymap is provided, ty is expected to be the key, and the value will be the C type to be looked up.

Example:

require 'fiddle/import'

include Fiddle::CParser
  #=> Object

parse_ctype('int')
  #=> Fiddle::TYPE_INT

parse_ctype('double diff')
  #=> Fiddle::TYPE_DOUBLE

parse_ctype('unsigned char byte')
  #=> -Fiddle::TYPE_CHAR

parse_ctype('const char* const argv[]')
  #=> -Fiddle::TYPE_VOIDP

Similar to read, but raises EOFError at end of string unless the +exception: false+ option is passed in.

Consumes size bytes from the buffer

Reads at most maxlen bytes in the non-blocking manner.

When no data can be read without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so read_nonblock should be called again when the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so read_nonblock should be called again after the underlying IO is writable.

OpenSSL::Buffering#read_nonblock needs two rescue clause as follows:

# emulates blocking read (readpartial).
begin
  result = ssl.read_nonblock(maxlen)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that read_nonblock writes to the underlying IO is when the peer requests a new TLS/SSL handshake. See openssl the FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that read_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead. At EOF, it will return nil instead of raising EOFError.

Writes s in the non-blocking manner.

If there is buffered data, it is flushed first. This may block.

write_nonblock returns number of bytes written to the SSL connection.

When no data can be written without blocking it raises OpenSSL::SSL::SSLError extended by IO::WaitReadable or IO::WaitWritable.

IO::WaitReadable means SSL needs to read internally so write_nonblock should be called again after the underlying IO is readable.

IO::WaitWritable means SSL needs to write internally so write_nonblock should be called again after underlying IO is writable.

So OpenSSL::Buffering#write_nonblock needs two rescue clause as follows.

# emulates blocking write.
begin
  result = ssl.write_nonblock(str)
rescue IO::WaitReadable
  IO.select([io])
  retry
rescue IO::WaitWritable
  IO.select(nil, [io])
  retry
end

Note that one reason that write_nonblock reads from the underlying IO is when the peer requests a new TLS/SSL handshake. See the openssl FAQ for more details. www.openssl.org/support/faq.html

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an IO::Wait*able exception, but return the symbol :wait_writable or :wait_readable instead.

Search took: 13ms  ·  Total Results: 3202