Results for: "remove_const"

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Date) with Julian year y, month m, day d and Day of Calendar Reform sg as JSON string

Returns the fractional part of the second.

DateTime.new(2001,2,3,4,5,6.5).sec_fraction       #=> (1/2)

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (DateTime) with Julian year y, month m, day d, hour H, minute M, second S, offset of and Day of Calendar Reform sg as JSON string

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Time) with number of seconds since epoch and number of microseconds for Time as JSON string

Return the number of seconds the specified time zone differs from UTC.

Numeric time zones that include minutes, such as -10:00 or +1330 will work, as will simpler hour-only time zones like -10 or +13.

Textual time zones listed in ZoneOffset are also supported.

If the time zone does not match any of the above, zone_offset will check if the local time zone (both with and without potential Daylight Saving Time changes being in effect) matches zone. Specifying a value for year will change the year used to find the local time zone.

If zone_offset is unable to determine the offset, nil will be returned.

require 'time'

Time.zone_offset("EST") #=> -18000

You must require ‘time’ to use this method.

No documentation available
No documentation available

Returns the number of nanoseconds for time.

t = Time.now        #=> 2007-11-17 15:18:03 +0900
"%10.9f" % t.to_f   #=> "1195280283.536151409"
t.nsec              #=> 536151406

The lowest digits of to_f and nsec are different because IEEE 754 double is not accurate enough to represent the exact number of nanoseconds since the Epoch.

The more accurate value is returned by nsec.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Struct) with Struct values v as a JSON string. Only named structs are supported.

No documentation available

Passes the Integer ordinal of each character in ios, passing the codepoint as an argument. The stream must be opened for reading or an IOError will be raised.

If no block is given, an enumerator is returned instead.

Returns the Encoding object that represents the encoding of the file. If io is in write mode and no encoding is specified, returns nil.

Returns the Encoding of the internal string if conversion is specified. Otherwise returns nil.

If single argument is specified, read string from io is tagged with the encoding specified. If encoding is a colon separated two encoding names “A:B”, the read string is converted from encoding A (external encoding) to encoding B (internal encoding), then tagged with B. If two arguments are specified, those must be encoding objects or encoding names, and the first one is the external encoding, and the second one is the internal encoding. If the external encoding and the internal encoding is specified, optional hash argument specify the conversion option.

Writes the given string to ios using the write(2) system call after O_NONBLOCK is set for the underlying file descriptor.

It returns the number of bytes written.

write_nonblock just calls the write(2) system call. It causes all errors the write(2) system call causes: Errno::EWOULDBLOCK, Errno::EINTR, etc. The result may also be smaller than string.length (partial write). The caller should care such errors and partial write.

If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitWritable. So IO::WaitWritable can be used to rescue the exceptions for retrying write_nonblock.

# Creates a pipe.
r, w = IO.pipe

# write_nonblock writes only 65536 bytes and return 65536.
# (The pipe size is 65536 bytes on this environment.)
s = "a" * 100000
p w.write_nonblock(s)     #=> 65536

# write_nonblock cannot write a byte and raise EWOULDBLOCK (EAGAIN).
p w.write_nonblock("b")   # Resource temporarily unavailable (Errno::EAGAIN)

If the write buffer is not empty, it is flushed at first.

When write_nonblock raises an exception kind of IO::WaitWritable, write_nonblock should not be called until io is writable for avoiding busy loop. This can be done as follows.

begin
  result = io.write_nonblock(string)
rescue IO::WaitWritable, Errno::EINTR
  IO.select(nil, [io])
  retry
end

Note that this doesn’t guarantee to write all data in string. The length written is reported as result and it should be checked later.

On some platforms such as Windows, write_nonblock is not supported according to the kind of the IO object. In such cases, write_nonblock raises Errno::EBADF.

By specifying a keyword argument exception to false, you can indicate that write_nonblock should not raise an IO::WaitWritable exception, but return the symbol :wait_writable instead.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (OpenStruct) with this struct’s values t as a JSON string.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Range) with JSON array of arguments a which include first (integer), last (integer), and exclude_end? (boolean) as JSON string.

Returns a hash, that will be turned into a JSON object and represent this object.

Stores class name (Regexp) with options o and source s (Regexp or String) as JSON string

Search took: 5ms  ·  Total Results: 4175