Return a list of the local variable names defined where this NameError
exception was raised.
Internal use only.
Return true if the caused method was called as private.
Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features
if your code wants to perform some action when a module is included in another.
module A def A.included(mod) puts "#{self} included in #{mod}" end end module Enumerable include A end # => prints "A included in Enumerable"
Returns the list of modules included in mod.
module Mixin end module Outer include Mixin end Mixin.included_modules #=> [] Outer.included_modules #=> [Mixin]
Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr
:name” on each name in turn. String
arguments are converted to symbols.
Defines a named attribute for this module, where the name is symbol.id2name
, creating an instance variable (@name
) and a corresponding access method to read it. Also creates a method called name=
to set the attribute. String
arguments are converted to symbols.
module Mod attr_accessor(:one, :two) end Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
Checks for a constant with the given name in mod. If inherit
is set, the lookup will also search the ancestors (and Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo class Bar VAL = 10 end class Baz < Bar; end end Object.const_get 'Foo::Baz::VAL' # => 10 Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_get 'foobar' #=> NameError: wrong constant name foobar
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.
Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false
.
class One @@var1 = 1 end class Two < One @@var2 = 2 end One.class_variables #=> [:@@var1] Two.class_variables #=> [:@@var2, :@@var1] Two.class_variables(false) #=> [:@@var2]
Makes a list of existing constants public.
Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.
module HTTP NotFound = Exception.new NOT_FOUND = NotFound # previous version of the library used this name deprecate_constant :NOT_FOUND end HTTP::NOT_FOUND # warning: constant HTTP::NOT_FOUND is deprecated
Defines an instance method in the receiver. The method parameter can be a Proc
, a Method
or an UnboundMethod
object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they’re used as method parameters. This block is evaluated using instance_eval
.
class A def fred puts "In Fred" end def create_method(name, &block) self.class.define_method(name, &block) end define_method(:wilma) { puts "Charge it!" } define_method(:flint) {|name| puts "I'm #{name}!"} end class B < A define_method(:barney, instance_method(:fred)) end a = B.new a.barney a.wilma a.flint('Dino') a.create_method(:betty) { p self } a.betty
produces:
In Fred Charge it! I'm Dino! #<B:0x401b39e8>
Returns true
if the named method is defined by mod. If inherit is set, the lookup will also search mod’s ancestors. Public and protected methods are matched. String
arguments are converted to symbols.
module A def method1() end def protected_method1() end protected :protected_method1 end class B def method2() end def private_method2() end private :private_method2 end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.method_defined? "method1" #=> true C.method_defined? "method2" #=> true C.method_defined? "method2", true #=> true C.method_defined? "method2", false #=> false C.method_defined? "method3" #=> true C.method_defined? "protected_method1" #=> true C.method_defined? "method4" #=> false C.method_defined? "private_method2" #=> false
Returns the value as an Integer
.
If the BigDecimal
is infinity or NaN, raises FloatDomainError
.
Returns true if the given ordinal date is valid, and false if not.
Date.valid_ordinal?(2001,34) #=> true Date.valid_ordinal?(2001,366) #=> false
Returns true if the given year is a leap year of the proleptic Gregorian calendar.
Date.gregorian_leap?(1900) #=> false Date.gregorian_leap?(2000) #=> true
Duplicates self and resets its day of calendar reform.
d = Date.new(1582,10,15) d.new_start(Date::JULIAN) #=> #<Date: 1582-10-05 ...>