Returns true
Prints obj on the given port (default $>
). Equivalent to:
def display(port=$>) port.write self nil end
For example:
1.display "cat".display [ 4, 5, 6 ].display puts
produces:
1cat[4, 5, 6]
provides a unified clone
operation, for REXML::XPathParser
to use across multiple Object
types
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. clone
copies the frozen (unless :freeze
keyword argument is given with a false value) state of obj. See also the discussion under Object#dup
.
class Klass attr_accessor :str end s1 = Klass.new #=> #<Klass:0x401b3a38> s1.str = "Hello" #=> "Hello" s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello"> s2.str[1,4] = "i" #=> "i" s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">" s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
provides a unified clone
operation, for REXML::XPathParser
to use across multiple Object
types
Returns the successor of int
, i.e. the Integer
equal to int+1
.
1.next #=> 2 (-1).next #=> 0 1.succ #=> 2 (-1).succ #=> 0
Returns self.
Returns the value as a rational. The optional argument eps
is always ignored.
Returns a complex object which denotes the given rectangular form.
Complex.rectangular(1, 2) #=> (1+2i)
Returns a complex object which denotes the given polar form.
Complex.polar(3, 0) #=> (3.0+0.0i) Complex.polar(3, Math::PI/2) #=> (1.836909530733566e-16+3.0i) Complex.polar(3, Math::PI) #=> (-3.0+3.673819061467132e-16i) Complex.polar(3, -Math::PI/2) #=> (1.836909530733566e-16-3.0i)
Returns the imaginary part.
Complex(7).imaginary #=> 0 Complex(9, -4).imaginary #=> -4
Returns the angle part of its polar form.
Complex.polar(3, Math::PI/2).arg #=> 1.5707963267948966
Returns an array; [cmp.abs, cmp.arg].
Complex(1, 2).polar #=> [2.23606797749979, 1.1071487177940904]
Returns the numerator.
1 2 3+4i <- numerator - + -i -> ---- 2 3 6 <- denominator c = Complex('1/2+2/3i') #=> ((1/2)+(2/3)*i) n = c.numerator #=> (3+4i) d = c.denominator #=> 6 n / d #=> ((1/2)+(2/3)*i) Complex(Rational(n.real, d), Rational(n.imag, d)) #=> ((1/2)+(2/3)*i)
See denominator.
Returns the value as a rational if possible (the imaginary part should be exactly zero).
Complex(1.0/3, 0).rationalize #=> (1/3) Complex(1, 0.0).rationalize # RangeError Complex(1, 2).rationalize # RangeError
See to_r.
Returns zero as a rational. The optional argument eps
is always ignored.
Returns zero.
Returns 0 if the value is positive, pi otherwise.
Returns an array; [num, 0].
Returns an array; [num.abs, num.arg].
Returns the receiver. freeze
cannot be false
.