Results for: "pstore"

Save session state to the session’s PStore file.

Update and close the session’s PStore file.

Close and delete the session’s PStore file.

No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

Raised in case of a stack overflow.

def me_myself_and_i
  me_myself_and_i
end
me_myself_and_i

raises the exception:

SystemStackError: stack level too deep
No documentation available

Raised when an invalid operation is attempted on a Fiber, in particular when attempting to call/resume a dead fiber, attempting to yield from the root fiber, or calling a fiber across threads.

fiber = Fiber.new{}
fiber.resume #=> nil
fiber.resume #=> FiberError: dead fiber called

A class which allows both internal and external iteration.

An Enumerator can be created by the following methods.

Most methods have two forms: a block form where the contents are evaluated for each item in the enumeration, and a non-block form which returns a new Enumerator wrapping the iteration.

enumerator = %w(one two three).each
puts enumerator.class # => Enumerator

enumerator.each_with_object("foo") do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

enum_with_obj = enumerator.each_with_object("foo")
puts enum_with_obj.class # => Enumerator

enum_with_obj.each do |item, obj|
  puts "#{obj}: #{item}"
end

# foo: one
# foo: two
# foo: three

This allows you to chain Enumerators together. For example, you can map a list’s elements to strings containing the index and the element as a string via:

puts %w[foo bar baz].map.with_index { |w, i| "#{i}:#{w}" }
# => ["0:foo", "1:bar", "2:baz"]

An Enumerator can also be used as an external iterator. For example, Enumerator#next returns the next value of the iterator or raises StopIteration if the Enumerator is at the end.

e = [1,2,3].each   # returns an enumerator object.
puts e.next   # => 1
puts e.next   # => 2
puts e.next   # => 3
puts e.next   # raises StopIteration

You can use this to implement an internal iterator as follows:

def ext_each(e)
  while true
    begin
      vs = e.next_values
    rescue StopIteration
      return $!.result
    end
    y = yield(*vs)
    e.feed y
  end
end

o = Object.new

def o.each
  puts yield
  puts yield(1)
  puts yield(1, 2)
  3
end

# use o.each as an internal iterator directly.
puts o.each {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

# convert o.each to an external iterator for
# implementing an internal iterator.
puts ext_each(o.to_enum) {|*x| puts x; [:b, *x] }
# => [], [:b], [1], [:b, 1], [1, 2], [:b, 1, 2], 3

Raised to stop the iteration, in particular by Enumerator#next. It is rescued by Kernel#loop.

loop do
  puts "Hello"
  raise StopIteration
  puts "World"
end
puts "Done!"

produces:

Hello
Done!

The most standard error types are subclasses of StandardError. A rescue clause without an explicit Exception class will rescue all StandardErrors (and only those).

def foo
  raise "Oups"
end
foo rescue "Hello"   #=> "Hello"

On the other hand:

require 'does/not/exist' rescue "Hi"

raises the exception:

LoadError: no such file to load -- does/not/exist

Raised when memory allocation fails.

SystemCallError is the base class for all low-level platform-dependent errors.

The errors available on the current platform are subclasses of SystemCallError and are defined in the Errno module.

File.open("does/not/exist")

raises the exception:

Errno::ENOENT: No such file or directory - does/not/exist

Use the Monitor class when you want to have a lock object for blocks with mutual exclusion.

require 'monitor'

lock = Monitor.new
lock.synchronize do
  # exclusive access
end
No documentation available
No documentation available
No documentation available

This library provides three different ways to delegate method calls to an object. The easiest to use is SimpleDelegator. Pass an object to the constructor and all methods supported by the object will be delegated. This object can be changed later.

Going a step further, the top level DelegateClass method allows you to easily setup delegation through class inheritance. This is considerably more flexible and thus probably the most common use for this library.

Finally, if you need full control over the delegation scheme, you can inherit from the abstract class Delegator and customize as needed. (If you find yourself needing this control, have a look at Forwardable which is also in the standard library. It may suit your needs better.)

SimpleDelegator’s implementation serves as a nice example of the use of Delegator:

class SimpleDelegator < Delegator
  def __getobj__
    @delegate_sd_obj # return object we are delegating to, required
  end

  def __setobj__(obj)
    @delegate_sd_obj = obj # change delegation object,
                           # a feature we're providing
  end
end

Notes

Be advised, RDoc will not detect delegated methods.

A concrete implementation of Delegator, this class provides the means to delegate all supported method calls to the object passed into the constructor and even to change the object being delegated to at a later time with __setobj__.

class User
  def born_on
    Date.new(1989, 9, 10)
  end
end

class UserDecorator < SimpleDelegator
  def birth_year
    born_on.year
  end
end

decorated_user = UserDecorator.new(User.new)
decorated_user.birth_year  #=> 1989
decorated_user.__getobj__  #=> #<User: ...>

A SimpleDelegator instance can take advantage of the fact that SimpleDelegator is a subclass of Delegator to call super to have methods called on the object being delegated to.

class SuperArray < SimpleDelegator
  def [](*args)
    super + 1
  end
end

SuperArray.new([1])[0]  #=> 2

Here’s a simple example that takes advantage of the fact that SimpleDelegator’s delegation object can be changed at any time.

class Stats
  def initialize
    @source = SimpleDelegator.new([])
  end

  def stats(records)
    @source.__setobj__(records)

    "Elements:  #{@source.size}\n" +
    " Non-Nil:  #{@source.compact.size}\n" +
    "  Unique:  #{@source.uniq.size}\n"
  end
end

s = Stats.new
puts s.stats(%w{James Edward Gray II})
puts
puts s.stats([1, 2, 3, nil, 4, 5, 1, 2])

Prints:

Elements:  4
 Non-Nil:  4
  Unique:  4

Elements:  8
 Non-Nil:  7
  Unique:  6

The Vector class represents a mathematical vector, which is useful in its own right, and also constitutes a row or column of a Matrix.

Method Catalogue

To create a Vector:

To access elements:

To set elements:

To enumerate the elements:

Properties of vectors:

Vector arithmetic:

Vector functions:

Conversion to other data types:

String representations:

No documentation available
No documentation available
Search took: 4ms  ·  Total Results: 3621