Results for: "remove_const"

No documentation available
No documentation available
No documentation available
No documentation available

Used internally to indicate that a dependency conflicted with a spec that would be activated.

A set of gems for installation sourced from remote sources and local .gem files

No documentation available

Represents an installed gem. This is used for dependency resolution.

No documentation available

Raised by Encoding and String methods when the source encoding is incompatible with the target encoding.

Description

A representation of a C function

Examples

‘strcpy’

@libc = Fiddle.dlopen "/lib/libc.so.6"
   #=> #<Fiddle::Handle:0x00000001d7a8d8>
f = Fiddle::Function.new(
  @libc['strcpy'],
  [Fiddle::TYPE_VOIDP, Fiddle::TYPE_VOIDP],
  Fiddle::TYPE_VOIDP)
   #=> #<Fiddle::Function:0x00000001d8ee00>
buff = "000"
   #=> "000"
str = f.call(buff, "123")
   #=> #<Fiddle::Pointer:0x00000001d0c380 ptr=0x000000018a21b8 size=0 free=0x00000000000000>
str.to_s
=> "123"

ABI check

@libc = Fiddle.dlopen "/lib/libc.so.6"
   #=> #<Fiddle::Handle:0x00000001d7a8d8>
f = Fiddle::Function.new(@libc['strcpy'], [TYPE_VOIDP, TYPE_VOIDP], TYPE_VOIDP)
   #=> #<Fiddle::Function:0x00000001d8ee00>
f.abi == Fiddle::Function::DEFAULT
   #=> true

Used internally by Fiddle::Importer

C struct shell

C union shell

A C struct wrapper

A C union wrapper

The base exception for JSON errors.

This exception is raised if the nesting of parsed data structures is too deep.

This exception is raised if the required unicode support is missing on the system. Usually this means that the iconv library is not installed.

No documentation available

OpenSSL::Digest allows you to compute message digests (sometimes interchangeably called “hashes”) of arbitrary data that are cryptographically secure, i.e. a Digest implements a secure one-way function.

One-way functions offer some useful properties. E.g. given two distinct inputs the probability that both yield the same output is highly unlikely. Combined with the fact that every message digest algorithm has a fixed-length output of just a few bytes, digests are often used to create unique identifiers for arbitrary data. A common example is the creation of a unique id for binary documents that are stored in a database.

Another useful characteristic of one-way functions (and thus the name) is that given a digest there is no indication about the original data that produced it, i.e. the only way to identify the original input is to “brute-force” through every possible combination of inputs.

These characteristics make one-way functions also ideal companions for public key signature algorithms: instead of signing an entire document, first a hash of the document is produced with a considerably faster message digest algorithm and only the few bytes of its output need to be signed using the slower public key algorithm. To validate the integrity of a signed document, it suffices to re-compute the hash and verify that it is equal to that in the signature.

Among the supported message digest algorithms are:

For each of these algorithms, there is a sub-class of Digest that can be instantiated as simply as e.g.

digest = OpenSSL::Digest::SHA1.new

Mapping between Digest class and sn/ln

The sn (short names) and ln (long names) are defined in <openssl/object.h> and <openssl/obj_mac.h>. They are textual representations of ASN.1 OBJECT IDENTIFIERs. Each supported digest algorithm has an OBJECT IDENTIFIER associated to it and those again have short/long names assigned to them. E.g. the OBJECT IDENTIFIER for SHA-1 is 1.3.14.3.2.26 and its sn is “SHA1” and its ln is “sha1”.

MD2

MD4

MD5

SHA

SHA-1

SHA-224

SHA-256

SHA-384

SHA-512

“Breaking” a message digest algorithm means defying its one-way function characteristics, i.e. producing a collision or finding a way to get to the original data by means that are more efficient than brute-forcing etc. Most of the supported digest algorithms can be considered broken in this sense, even the very popular MD5 and SHA1 algorithms. Should security be your highest concern, then you should probably rely on SHA224, SHA256, SHA384 or SHA512.

Hashing a file

data = File.read('document')
sha256 = OpenSSL::Digest::SHA256.new
digest = sha256.digest(data)

Hashing several pieces of data at once

data1 = File.read('file1')
data2 = File.read('file2')
data3 = File.read('file3')
sha256 = OpenSSL::Digest::SHA256.new
sha256 << data1
sha256 << data2
sha256 << data3
digest = sha256.digest

Reuse a Digest instance

data1 = File.read('file1')
sha256 = OpenSSL::Digest::SHA256.new
digest1 = sha256.digest(data1)

data2 = File.read('file2')
sha256.reset
digest2 = sha256.digest(data2)

Generic error, common for all classes under OpenSSL module

If an object defines encode_with, then an instance of Psych::Coder will be passed to the method when the object is being serialized. The Coder automatically assumes a Psych::Nodes::Mapping is being emitted. Other objects like Sequence and Scalar may be emitted if seq= or scalar= are called, respectively.

No documentation available

Socket::Option represents a socket option used by BasicSocket#getsockopt and BasicSocket#setsockopt. A socket option contains the socket family, protocol level, option name optname and option value data.

Search took: 10ms  ·  Total Results: 4175