Results for: "OptionParser"

Creates a matrix where the diagonal elements are composed of values.

Matrix.diagonal(9, 5, -3)
  =>  9  0  0
      0  5  0
      0  0 -3

Creates an n by n diagonal matrix where each diagonal element is value.

Matrix.scalar(2, 5)
  => 5 0
     0 5

Creates an n by n identity matrix.

Matrix.identity(2)
  => 1 0
     0 1

Creates a zero matrix.

Matrix.zero(2)
  => 0 0
     0 0

Creates a empty matrix of row_count x column_count. At least one of row_count or column_count must be 0.

m = Matrix.empty(2, 0)
m == Matrix[ [], [] ]
  => true
n = Matrix.empty(0, 3)
n == Matrix.columns([ [], [], [] ])
  => true
m * n
  => Matrix[[0, 0, 0], [0, 0, 0]]
No documentation available

Returns true if this is a diagonal matrix. Raises an error if matrix is not square.

Returns true if this is an empty matrix, i.e. if the number of rows or the number of columns is 0.

Returns true if this is an orthogonal matrix Raises an error if matrix is not square.

Returns true if this is a regular (i.e. non-singular) matrix.

Returns true if this is a singular matrix.

Returns true if this is a square matrix.

Returns true if this is an antisymmetric matrix. Raises an error if matrix is not square.

Returns true if this is a unitary matrix Raises an error if matrix is not square.

Returns true if this is a matrix with only zero elements

Returns the determinant of the matrix.

Beware that using Float values can yield erroneous results because of their lack of precision. Consider using exact types like Rational or BigDecimal instead.

Matrix[[7,6], [3,9]].determinant
  => 45

deprecated; use Matrix#determinant

Returns the transpose of the matrix.

Matrix[[1,2], [3,4], [5,6]]
  => 1 2
     3 4
     5 6
Matrix[[1,2], [3,4], [5,6]].transpose
  => 1 3 5
     2 4 6

Returns the conjugate of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i   i  0
        1   2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
  => 1-2i  -i  0
        1   2  3
No documentation available

Returns the imaginary part of the matrix.

Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
  => 1+2i  i  0
        1  2  3
Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
  =>   2i  i  0
        0  0  0
No documentation available

The coerce method provides support for Ruby type coercion. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator. See also Numeric#coerce.

Return a zero vector.

Vector.zero(3) => Vector[0, 0, 0]
No documentation available
Search took: 6ms  ·  Total Results: 4629