Return this SystemCallError’s error number.
Returns the list of Modules
nested at the point of call.
module M1 module M2 $a = Module.nesting end end $a #=> [M1::M2, M1] $a[0].name #=> "M1::M2"
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4) # => [:ARGF, :ARGV, :ArgumentError, :Array] Module.constants.include?(:SEEK_SET) # => false class IO Module.constants.include?(:SEEK_SET) # => true end
The second form calls the instance method constants
.
Returns a list of modules included/prepended in mod (including mod itself).
module Mod include Math include Comparable prepend Enumerable end Mod.ancestors #=> [Enumerable, Mod, Comparable, Math] Math.ancestors #=> [Math] Enumerable.ancestors #=> [Enumerable]
Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false
.
The implementation makes no guarantees about the order in which the constants are yielded.
IO.constants.include?(:SYNC) #=> true IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
Returns the remainder from dividing by the value.
x.remainder(y) means x-y*(x/y).truncate
Returns the value raised to the power of n.
Note that n must be an Integer
.
Also available as the operator **.
Returns True if the value is zero.
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal
and an object of another type, if the other object can be coerced into a BigDecimal
value.
e.g.
a = BigDecimal("1.0") b = a / 2.0 #=> 0.5
Note that coercing a String
to a BigDecimal
is not supported by default; it requires a special compile-time option when building Ruby.
Returns the exponent of the BigDecimal
number, as an Integer
.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
Returns the numerator.
Rational(7).numerator #=> 7 Rational(7, 1).numerator #=> 7 Rational(9, -4).numerator #=> -9 Rational(-2, -10).numerator #=> 1
Returns true
if rat
is greater than 0.
Returns true
if rat
is less than 0.
Creates a date object denoting the given week date.
The week and the day of week should be a negative or a positive number (as a relative week/day from the end of year/week when negative). They should not be zero.
Date.commercial(2001) #=> #<Date: 2001-01-01 ...> Date.commercial(2002) #=> #<Date: 2001-12-31 ...> Date.commercial(2001,5,6) #=> #<Date: 2001-02-03 ...>
Returns the calendar week based year.
Date.new(2001,2,3).cwyear #=> 2001 Date.new(2000,1,1).cwyear #=> 1999
Returns true if the date is Monday.
Returns true if the date is Thursday.
Returns the Julian day number denoting the day of calendar reform.
Date.new(2001,2,3).start #=> 2299161.0 Date.new(2001,2,3,Date::GREGORIAN).start #=> -Infinity
This method is equivalent to step(max, 1){|date| …}.
Formats date according to the directives in the given format string. The directives begin with a percent (%) character. Any text not listed as a directive will be passed through to the output string.
A directive consists of a percent (%) character, zero or more flags, an optional minimum field width, an optional modifier, and a conversion specifier as follows.
%<flags><width><modifier><conversion>
Flags:
- don't pad a numerical output. _ use spaces for padding. 0 use zeros for padding. ^ upcase the result string. # change case.
The minimum field width specifies the minimum width.
The modifiers are “E”, “O”, “:”, “::” and “:::”. “E” and “O” are ignored. No effect to result currently.
Format directives:
Date (Year, Month, Day): %Y - Year with century (can be negative, 4 digits at least) -0001, 0000, 1995, 2009, 14292, etc. %C - year / 100 (round down. 20 in 2009) %y - year % 100 (00..99) %m - Month of the year, zero-padded (01..12) %_m blank-padded ( 1..12) %-m no-padded (1..12) %B - The full month name (``January'') %^B uppercased (``JANUARY'') %b - The abbreviated month name (``Jan'') %^b uppercased (``JAN'') %h - Equivalent to %b %d - Day of the month, zero-padded (01..31) %-d no-padded (1..31) %e - Day of the month, blank-padded ( 1..31) %j - Day of the year (001..366) Time (Hour, Minute, Second, Subsecond): %H - Hour of the day, 24-hour clock, zero-padded (00..23) %k - Hour of the day, 24-hour clock, blank-padded ( 0..23) %I - Hour of the day, 12-hour clock, zero-padded (01..12) %l - Hour of the day, 12-hour clock, blank-padded ( 1..12) %P - Meridian indicator, lowercase (``am'' or ``pm'') %p - Meridian indicator, uppercase (``AM'' or ``PM'') %M - Minute of the hour (00..59) %S - Second of the minute (00..60) %L - Millisecond of the second (000..999) %N - Fractional seconds digits, default is 9 digits (nanosecond) %3N millisecond (3 digits) %15N femtosecond (15 digits) %6N microsecond (6 digits) %18N attosecond (18 digits) %9N nanosecond (9 digits) %21N zeptosecond (21 digits) %12N picosecond (12 digits) %24N yoctosecond (24 digits) Time zone: %z - Time zone as hour and minute offset from UTC (e.g. +0900) %:z - hour and minute offset from UTC with a colon (e.g. +09:00) %::z - hour, minute and second offset from UTC (e.g. +09:00:00) %:::z - hour, minute and second offset from UTC (e.g. +09, +09:30, +09:30:30) %Z - Equivalent to %:z (e.g. +09:00) Weekday: %A - The full weekday name (``Sunday'') %^A uppercased (``SUNDAY'') %a - The abbreviated name (``Sun'') %^a uppercased (``SUN'') %u - Day of the week (Monday is 1, 1..7) %w - Day of the week (Sunday is 0, 0..6) ISO 8601 week-based year and week number: The week 1 of YYYY starts with a Monday and includes YYYY-01-04. The days in the year before the first week are in the last week of the previous year. %G - The week-based year %g - The last 2 digits of the week-based year (00..99) %V - Week number of the week-based year (01..53) Week number: The week 1 of YYYY starts with a Sunday or Monday (according to %U or %W). The days in the year before the first week are in week 0. %U - Week number of the year. The week starts with Sunday. (00..53) %W - Week number of the year. The week starts with Monday. (00..53) Seconds since the Unix Epoch: %s - Number of seconds since 1970-01-01 00:00:00 UTC. %Q - Number of milliseconds since 1970-01-01 00:00:00 UTC. Literal string: %n - Newline character (\n) %t - Tab character (\t) %% - Literal ``%'' character Combination: %c - date and time (%a %b %e %T %Y) %D - Date (%m/%d/%y) %F - The ISO 8601 date format (%Y-%m-%d) %v - VMS date (%e-%b-%Y) %x - Same as %D %X - Same as %T %r - 12-hour time (%I:%M:%S %p) %R - 24-hour time (%H:%M) %T - 24-hour time (%H:%M:%S) %+ - date(1) (%a %b %e %H:%M:%S %Z %Y)
This method is similar to the strftime() function defined in ISO C and POSIX. Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z) are locale dependent in the function. However, this method is locale independent. So, the result may differ even if the same format string is used in other systems such as C. It is good practice to avoid %x and %X because there are corresponding locale independent representations, %D and %T.
Examples:
d = DateTime.new(2007,11,19,8,37,48,"-06:00") #=> #<DateTime: 2007-11-19T08:37:48-0600 ...> d.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007" d.strftime("at %I:%M%p") #=> "at 08:37AM"
Various ISO 8601 formats:
%Y%m%d => 20071119 Calendar date (basic) %F => 2007-11-19 Calendar date (extended) %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month %Y => 2007 Calendar date, reduced accuracy, specific year %C => 20 Calendar date, reduced accuracy, specific century %Y%j => 2007323 Ordinal date (basic) %Y-%j => 2007-323 Ordinal date (extended) %GW%V%u => 2007W471 Week date (basic) %G-W%V-%u => 2007-W47-1 Week date (extended) %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic) %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended) %H%M%S => 083748 Local time (basic) %T => 08:37:48 Local time (extended) %H%M => 0837 Local time, reduced accuracy, specific minute (basic) %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended) %H => 08 Local time, reduced accuracy, specific hour %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic) %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended) %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic) %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended) %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic) %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended) %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic) %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended) %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic) %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended) %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic) %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended) %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic) %FT%R => 2007-11-19T08:37 Calendar date and local time (extended) %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic) %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended) %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic) %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended)
See also strftime(3) and ::strptime
.