Results for: "strip"

No documentation available
No documentation available
No documentation available
No documentation available
No documentation available
No documentation available

Signing gems

The Gem::Security implements cryptographic signatures for gems. The section below is a step-by-step guide to using signed gems and generating your own.

Walkthrough

Building your certificate

In order to start signing your gems, you’ll need to build a private key and a self-signed certificate. Here’s how:

# build a private key and certificate for yourself:
$ gem cert --build you@example.com

This could take anywhere from a few seconds to a minute or two, depending on the speed of your computer (public key algorithms aren’t exactly the speediest crypto algorithms in the world). When it’s finished, you’ll see the files “gem-private_key.pem” and “gem-public_cert.pem” in the current directory.

First things first: Move both files to ~/.gem if you don’t already have a key and certificate in that directory. Ensure the file permissions make the key unreadable by others (by default the file is saved securely).

Keep your private key hidden; if it’s compromised, someone can sign packages as you (note: PKI has ways of mitigating the risk of stolen keys; more on that later).

Signing Gems

In RubyGems 2 and newer there is no extra work to sign a gem. RubyGems will automatically find your key and certificate in your home directory and use them to sign newly packaged gems.

If your certificate is not self-signed (signed by a third party) RubyGems will attempt to load the certificate chain from the trusted certificates. Use gem cert --add signing_cert.pem to add your signers as trusted certificates. See below for further information on certificate chains.

If you build your gem it will automatically be signed. If you peek inside your gem file, you’ll see a couple of new files have been added:

$ tar tf your-gem-1.0.gem
metadata.gz
metadata.gz.sum
metadata.gz.sig # metadata signature
data.tar.gz
data.tar.gz.sum
data.tar.gz.sig # data signature

Manually signing gems

If you wish to store your key in a separate secure location you’ll need to set your gems up for signing by hand. To do this, set the signing_key and cert_chain in the gemspec before packaging your gem:

s.signing_key = '/secure/path/to/gem-private_key.pem'
s.cert_chain = %w[/secure/path/to/gem-public_cert.pem]

When you package your gem with these options set RubyGems will automatically load your key and certificate from the secure paths.

Signed gems and security policies

Now let’s verify the signature. Go ahead and install the gem, but add the following options: -P HighSecurity, like this:

# install the gem with using the security policy "HighSecurity"
$ sudo gem install your.gem -P HighSecurity

The -P option sets your security policy – we’ll talk about that in just a minute. Eh, what’s this?

$ gem install -P HighSecurity your-gem-1.0.gem
ERROR:  While executing gem ... (Gem::Security::Exception)
    root cert /CN=you/DC=example is not trusted

The culprit here is the security policy. RubyGems has several different security policies. Let’s take a short break and go over the security policies. Here’s a list of the available security policies, and a brief description of each one:

The reason RubyGems refused to install your shiny new signed gem was because it was from an untrusted source. Well, your code is infallible (naturally), so you need to add yourself as a trusted source:

# add trusted certificate
gem cert --add ~/.gem/gem-public_cert.pem

You’ve now added your public certificate as a trusted source. Now you can install packages signed by your private key without any hassle. Let’s try the install command above again:

# install the gem with using the HighSecurity policy (and this time
# without any shenanigans)
$ gem install -P HighSecurity your-gem-1.0.gem
Successfully installed your-gem-1.0
1 gem installed

This time RubyGems will accept your signed package and begin installing.

While you’re waiting for RubyGems to work it’s magic, have a look at some of the other security commands by running gem help cert:

Options:
  -a, --add CERT                   Add a trusted certificate.
  -l, --list [FILTER]              List trusted certificates where the
                                   subject contains FILTER
  -r, --remove FILTER              Remove trusted certificates where the
                                   subject contains FILTER
  -b, --build EMAIL_ADDR           Build private key and self-signed
                                   certificate for EMAIL_ADDR
  -C, --certificate CERT           Signing certificate for --sign
  -K, --private-key KEY            Key for --sign or --build
  -s, --sign CERT                  Signs CERT with the key from -K
                                   and the certificate from -C

We’ve already covered the --build option, and the --add, --list, and --remove commands seem fairly straightforward; they allow you to add, list, and remove the certificates in your trusted certificate list. But what’s with this --sign option?

Certificate chains

To answer that question, let’s take a look at “certificate chains”, a concept I mentioned earlier. There are a couple of problems with self-signed certificates: first of all, self-signed certificates don’t offer a whole lot of security. Sure, the certificate says Yukihiro Matsumoto, but how do I know it was actually generated and signed by matz himself unless he gave me the certificate in person?

The second problem is scalability. Sure, if there are 50 gem authors, then I have 50 trusted certificates, no problem. What if there are 500 gem authors? 1000? Having to constantly add new trusted certificates is a pain, and it actually makes the trust system less secure by encouraging RubyGems users to blindly trust new certificates.

Here’s where certificate chains come in. A certificate chain establishes an arbitrarily long chain of trust between an issuing certificate and a child certificate. So instead of trusting certificates on a per-developer basis, we use the PKI concept of certificate chains to build a logical hierarchy of trust. Here’s a hypothetical example of a trust hierarchy based (roughly) on geography:

                    --------------------------
                    | rubygems@rubygems.org |
                    --------------------------
                                |
              -----------------------------------
              |                                 |
  ----------------------------    -----------------------------
  |  seattlerb@seattlerb.org |    | dcrubyists@richkilmer.com |
  ----------------------------    -----------------------------
       |                |                 |             |
---------------   ----------------   -----------   --------------
|   drbrain   |   |   zenspider  |   | pabs@dc |   | tomcope@dc |
---------------   ----------------   -----------   --------------

Now, rather than having 4 trusted certificates (one for drbrain, zenspider, pabs@dc, and tomecope@dc), a user could actually get by with one certificate, the “rubygems@rubygems.org” certificate.

Here’s how it works:

I install “rdoc-3.12.gem”, a package signed by “drbrain”. I’ve never heard of “drbrain”, but his certificate has a valid signature from the “seattle.rb@seattlerb.org” certificate, which in turn has a valid signature from the “rubygems@rubygems.org” certificate. Voila! At this point, it’s much more reasonable for me to trust a package signed by “drbrain”, because I can establish a chain to “rubygems@rubygems.org”, which I do trust.

Signing certificates

The --sign option allows all this to happen. A developer creates their build certificate with the --build option, then has their certificate signed by taking it with them to their next regional Ruby meetup (in our hypothetical example), and it’s signed there by the person holding the regional RubyGems signing certificate, which is signed at the next RubyConf by the holder of the top-level RubyGems certificate. At each point the issuer runs the same command:

# sign a certificate with the specified key and certificate
# (note that this modifies client_cert.pem!)
$ gem cert -K /mnt/floppy/issuer-priv_key.pem -C issuer-pub_cert.pem
   --sign client_cert.pem

Then the holder of issued certificate (in this case, your buddy “drbrain”), can start using this signed certificate to sign RubyGems. By the way, in order to let everyone else know about his new fancy signed certificate, “drbrain” would save his newly signed certificate as ~/.gem/gem-public_cert.pem

Obviously this RubyGems trust infrastructure doesn’t exist yet. Also, in the “real world”, issuers actually generate the child certificate from a certificate request, rather than sign an existing certificate. And our hypothetical infrastructure is missing a certificate revocation system. These are that can be fixed in the future…

At this point you should know how to do all of these new and interesting things:

Manually verifying signatures

In case you don’t trust RubyGems you can verify gem signatures manually:

  1. Fetch and unpack the gem

    gem fetch some_signed_gem
    tar -xf some_signed_gem-1.0.gem
  2. Grab the public key from the gemspec

    gem spec some_signed_gem-1.0.gem cert_chain | \
      ruby -ryaml -e 'puts YAML.load_documents($stdin)' > public_key.crt
  3. Generate a SHA1 hash of the data.tar.gz

    openssl dgst -sha1 < data.tar.gz > my.hash
    
  4. Verify the signature

    openssl rsautl -verify -inkey public_key.crt -certin \
      -in data.tar.gz.sig > verified.hash
  5. Compare your hash to the verified hash

    diff -s verified.hash my.hash
  6. Repeat 5 and 6 with metadata.gz

OpenSSL Reference

The .pem files generated by –build and –sign are PEM files. Here’s a couple of useful OpenSSL commands for manipulating them:

# convert a PEM format X509 certificate into DER format:
# (note: Windows .cer files are X509 certificates in DER format)
$ openssl x509 -in input.pem -outform der -out output.der

# print out the certificate in a human-readable format:
$ openssl x509 -in input.pem -noout -text

And you can do the same thing with the private key file as well:

# convert a PEM format RSA key into DER format:
$ openssl rsa -in input_key.pem -outform der -out output_key.der

# print out the key in a human readable format:
$ openssl rsa -in input_key.pem -noout -text

Bugs/TODO

Original author

Paul Duncan <pabs@pablotron.org> pablotron.org/

Mixin methods for install and update options for Gem::Commands

Mixin methods for security option for Gem::Commands

When rubygems/test_case is required the default user interaction is a MockGemUi.

Module that defines the default UserInteraction. Any class including this module will have access to the ui method that returns the default UI.

UserInteraction allows RubyGems to interact with the user through standard methods that can be replaced with more-specific UI methods for different displays.

Since UserInteraction dispatches to a concrete UI class you may need to reference other classes for specific behavior such as Gem::ConsoleUI or Gem::SilentUI.

Example:

class X
  include Gem::UserInteraction

  def get_answer
    n = ask("What is the meaning of life?")
  end
end

This module is used to manager HTTP status codes.

See www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for more information.

IO wrapper that provides only write

No documentation available

PersonConstruct that contains information regarding the contributors of a Feed or Entry.

Reference: validator.w3.org/feed/docs/rfc4287.html#element.contributor

No documentation available
No documentation available

IO wrapper that allows writing a limited amount of data

Deprecated.

This class is only provided for backwards compatibility. Use OpenSSL::Cipher.

A StoreContext is used while validating a single certificate and holds the status involved.

No documentation available

The parent class for all primitive encodings. Attributes are the same as for ASN1Data, with the addition of tagging. Primitive values can never be encoded with indefinite length form, thus it is not possible to set the indefinite_length attribute for Primitive and its sub-classes.

Primitive sub-classes and their mapping to Ruby classes

OpenSSL::ASN1::BitString

Additional attributes

unused_bits: if the underlying BIT STRING’s length is a multiple of 8 then unused_bits is 0. Otherwise unused_bits indicates the number of bits that are to be ignored in the final octet of the BitString’s value.

OpenSSL::ASN1::ObjectId

NOTE: While OpenSSL::ASN1::ObjectId.new will allocate a new ObjectId, it is not typically allocated this way, but rather that are received from parsed ASN1 encodings.

Additional attributes

Examples

With the Exception of OpenSSL::ASN1::EndOfContent, each Primitive class constructor takes at least one parameter, the value.

Creating EndOfContent

eoc = OpenSSL::ASN1::EndOfContent.new

Creating any other Primitive

prim = <class>.new(value) # <class> being one of the sub-classes except EndOfContent
prim_zero_tagged_implicit = <class>.new(value, 0, :IMPLICIT)
prim_zero_tagged_explicit = <class>.new(value, 0, :EXPLICIT)
No documentation available

Generic Exception class that is raised if an error occurs during a Digest operation.

An OpenSSL::OCSP::Request contains the certificate information for determining if a certificate has been revoked or not. A Request can be created for a certificate or from a DER-encoded request created elsewhere.

Search took: 7ms  ·  Total Results: 1841