Results for: "module_function"

If you add a method, keep in mind two things: (1) the first argument will always be a list of nodes from which to filter. In the case of context methods (such as position), the function should return an array with a value for each child in the array. (2) all method calls from XML will have “-” replaced with “_”. Therefore, in XML, “local-name()” is identical (and actually becomes) “local_name()”

No documentation available

An OpenSSL::OCSP::SingleResponse represents an OCSP SingleResponse structure, which contains the basic information of the status of the certificate.

No documentation available

Indicates that the DNS request was unable to be encoded.

No documentation available
No documentation available

AbstractServlet allows HTTP server modules to be reused across multiple servers and allows encapsulation of functionality.

By default a servlet will respond to GET, HEAD (through an alias to GET) and OPTIONS requests.

By default a new servlet is initialized for every request. A servlet instance can be reused by overriding ::get_instance in the AbstractServlet subclass.

A Simple Servlet

class Simple < WEBrick::HTTPServlet::AbstractServlet
  def do_GET request, response
    status, content_type, body = do_stuff_with request

    response.status = status
    response['Content-Type'] = content_type
    response.body = body
  end

  def do_stuff_with request
    return 200, 'text/plain', 'you got a page'
  end
end

This servlet can be mounted on a server at a given path:

server.mount '/simple', Simple

Servlet Configuration

Servlets can be configured via initialize. The first argument is the HTTP server the servlet is being initialized for.

class Configurable < Simple
  def initialize server, color, size
    super server
    @color = color
    @size = size
  end

  def do_stuff_with request
    content = "<p " \
              %q{style="color: #{@color}; font-size: #{@size}"} \
              ">Hello, World!"

    return 200, "text/html", content
  end
end

This servlet must be provided two arguments at mount time:

server.mount '/configurable', Configurable, 'red', '2em'

Class used to manage timeout handlers across multiple threads.

Timeout handlers should be managed by using the class methods which are synchronized.

id = TimeoutHandler.register(10, Timeout::Error)
begin
  sleep 20
  puts 'foo'
ensure
  TimeoutHandler.cancel(id)
end

will raise Timeout::Error

id = TimeoutHandler.register(10, Timeout::Error)
begin
  sleep 5
  puts 'foo'
ensure
  TimeoutHandler.cancel(id)
end

will print ‘foo’

No documentation available

TextConstruct that conveys a description or subtitle for a Feed.

Reference: validator.w3.org/feed/docs/rfc4287.html#element.subtitle

TextConstruct that conveys a description or title for a Feed or Entry.

Reference: validator.w3.org/feed/docs/rfc4287.html#element.title

No documentation available

An error caused by attempting to fulfil a dependency that was circular

@note This exception will be thrown iff a {Vertex} is added to a

{DependencyGraph} that has a {DependencyGraph::Vertex#path_to?} an
existing {DependencyGraph::Vertex}

Continuation objects are generated by Kernel#callcc, after having +require+d continuation. They hold a return address and execution context, allowing a nonlocal return to the end of the callcc block from anywhere within a program. Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp (although they contain more state, so you might consider them closer to threads).

For instance:

require "continuation"
arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
callcc{|cc| $cc = cc}
puts(message = arr.shift)
$cc.call unless message =~ /Max/

produces:

Freddie
Herbie
Ron
Max

Also you can call callcc in other methods:

require "continuation"

def g
  arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
  cc = callcc { |cc| cc }
  puts arr.shift
  return cc, arr.size
end

def f
  c, size = g
  c.call(c) if size > 1
end

f

This (somewhat contrived) example allows the inner loop to abandon processing early:

require "continuation"
callcc {|cont|
  for i in 0..4
    print "\n#{i}: "
    for j in i*5...(i+1)*5
      cont.call() if j == 17
      printf "%3d", j
    end
  end
}
puts

produces:

0:   0  1  2  3  4
1:   5  6  7  8  9
2:  10 11 12 13 14
3:  15 16

Raised to stop the iteration, in particular by Enumerator#next. It is rescued by Kernel#loop.

loop do
  puts "Hello"
  raise StopIteration
  puts "World"
end
puts "Done!"

produces:

Hello
Done!

Descendants of class Exception are used to communicate between Kernel#raise and rescue statements in begin ... end blocks. Exception objects carry information about the exception – its type (the exception’s class name), an optional descriptive string, and optional traceback information. Exception subclasses may add additional information like NameError#name.

Programs may make subclasses of Exception, typically of StandardError or RuntimeError, to provide custom classes and add additional information. See the subclass list below for defaults for raise and rescue.

When an exception has been raised but not yet handled (in rescue, ensure, at_exit and END blocks) the global variable $! will contain the current exception and $@ contains the current exception’s backtrace.

It is recommended that a library should have one subclass of StandardError or RuntimeError and have specific exception types inherit from it. This allows the user to rescue a generic exception type to catch all exceptions the library may raise even if future versions of the library add new exception subclasses.

For example:

class MyLibrary
  class Error < RuntimeError
  end

  class WidgetError < Error
  end

  class FrobError < Error
  end

end

To handle both WidgetError and FrobError the library user can rescue MyLibrary::Error.

The built-in subclasses of Exception are:

A rational number can be represented as a pair of integer numbers: a/b (b>0), where a is the numerator and b is the denominator. Integer a equals rational a/1 mathematically.

In Ruby, you can create rational objects with the Kernel#Rational, to_r, or rationalize methods or by suffixing r to a literal. The return values will be irreducible fractions.

Rational(1)      #=> (1/1)
Rational(2, 3)   #=> (2/3)
Rational(4, -6)  #=> (-2/3)
3.to_r           #=> (3/1)
2/3r             #=> (2/3)

You can also create rational objects from floating-point numbers or strings.

Rational(0.3)    #=> (5404319552844595/18014398509481984)
Rational('0.3')  #=> (3/10)
Rational('2/3')  #=> (2/3)

0.3.to_r         #=> (5404319552844595/18014398509481984)
'0.3'.to_r       #=> (3/10)
'2/3'.to_r       #=> (2/3)
0.3.rationalize  #=> (3/10)

A rational object is an exact number, which helps you to write programs without any rounding errors.

10.times.inject(0) {|t| t + 0.1 }              #=> 0.9999999999999999
10.times.inject(0) {|t| t + Rational('0.1') }  #=> (1/1)

However, when an expression includes an inexact component (numerical value or operation), it will produce an inexact result.

Rational(10) / 3   #=> (10/3)
Rational(10) / 3.0 #=> 3.3333333333333335

Rational(-8) ** Rational(1, 3)
                   #=> (1.0000000000000002+1.7320508075688772i)
No documentation available

OptionParser

Introduction

OptionParser is a class for command-line option analysis. It is much more advanced, yet also easier to use, than GetoptLong, and is a more Ruby-oriented solution.

Features

  1. The argument specification and the code to handle it are written in the same place.

  2. It can output an option summary; you don’t need to maintain this string separately.

  3. Optional and mandatory arguments are specified very gracefully.

  4. Arguments can be automatically converted to a specified class.

  5. Arguments can be restricted to a certain set.

All of these features are demonstrated in the examples below. See make_switch for full documentation.

Minimal example

require 'optparse'

options = {}
OptionParser.new do |opts|
  opts.banner = "Usage: example.rb [options]"

  opts.on("-v", "--[no-]verbose", "Run verbosely") do |v|
    options[:verbose] = v
  end
end.parse!

p options
p ARGV

Generating Help

OptionParser can be used to automatically generate help for the commands you write:

require 'optparse'

Options = Struct.new(:name)

class Parser
  def self.parse(options)
    args = Options.new("world")

    opt_parser = OptionParser.new do |opts|
      opts.banner = "Usage: example.rb [options]"

      opts.on("-nNAME", "--name=NAME", "Name to say hello to") do |n|
        args.name = n
      end

      opts.on("-h", "--help", "Prints this help") do
        puts opts
        exit
      end
    end

    opt_parser.parse!(options)
    return args
  end
end
options = Parser.parse %w[--help]

#=>
   # Usage: example.rb [options]
   #     -n, --name=NAME                  Name to say hello to
   #     -h, --help                       Prints this help

Required Arguments

For options that require an argument, option specification strings may include an option name in all caps. If an option is used without the required argument, an exception will be raised.

require 'optparse'

options = {}
OptionParser.new do |parser|
  parser.on("-r", "--require LIBRARY",
            "Require the LIBRARY before executing your script") do |lib|
    puts "You required #{lib}!"
  end
end.parse!

Used:

$ ruby optparse-test.rb -r
optparse-test.rb:9:in `<main>': missing argument: -r (OptionParser::MissingArgument)
$ ruby optparse-test.rb -r my-library
You required my-library!

Type Coercion

OptionParser supports the ability to coerce command line arguments into objects for us.

OptionParser comes with a few ready-to-use kinds of type coercion. They are:

We can also add our own coercions, which we will cover soon.

Using Built-in Conversions

As an example, the built-in Time conversion is used. The other built-in conversions behave in the same way. OptionParser will attempt to parse the argument as a Time. If it succeeds, that time will be passed to the handler block. Otherwise, an exception will be raised.

require 'optparse'
require 'optparse/time'
OptionParser.new do |parser|
  parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time|
    p time
  end
end.parse!

Used:

$ ruby optparse-test.rb  -t nonsense
... invalid argument: -t nonsense (OptionParser::InvalidArgument)
$ ruby optparse-test.rb  -t 10-11-12
2010-11-12 00:00:00 -0500
$ ruby optparse-test.rb  -t 9:30
2014-08-13 09:30:00 -0400

Creating Custom Conversions

The accept method on OptionParser may be used to create converters. It specifies which conversion block to call whenever a class is specified. The example below uses it to fetch a User object before the on handler receives it.

require 'optparse'

User = Struct.new(:id, :name)

def find_user id
  not_found = ->{ raise "No User Found for id #{id}" }
  [ User.new(1, "Sam"),
    User.new(2, "Gandalf") ].find(not_found) do |u|
    u.id == id
  end
end

op = OptionParser.new
op.accept(User) do |user_id|
  find_user user_id.to_i
end

op.on("--user ID", User) do |user|
  puts user
end

op.parse!

Used:

$ ruby optparse-test.rb --user 1
#<struct User id=1, name="Sam">
$ ruby optparse-test.rb --user 2
#<struct User id=2, name="Gandalf">
$ ruby optparse-test.rb --user 3
optparse-test.rb:15:in `block in find_user': No User Found for id 3 (RuntimeError)

Store options to a Hash

The into option of order, parse and so on methods stores command line options into a Hash.

require 'optparse'

params = {}
OptionParser.new do |opts|
  opts.on('-a')
  opts.on('-b NUM', Integer)
  opts.on('-v', '--verbose')
end.parse!(into: params)

p params

Used:

$ ruby optparse-test.rb -a
{:a=>true}
$ ruby optparse-test.rb -a -v
{:a=>true, :verbose=>true}
$ ruby optparse-test.rb -a -b 100
{:a=>true, :b=>100}

Complete example

The following example is a complete Ruby program. You can run it and see the effect of specifying various options. This is probably the best way to learn the features of optparse.

require 'optparse'
require 'optparse/time'
require 'ostruct'
require 'pp'

class OptparseExample
  Version = '1.0.0'

  CODES = %w[iso-2022-jp shift_jis euc-jp utf8 binary]
  CODE_ALIASES = { "jis" => "iso-2022-jp", "sjis" => "shift_jis" }

  class ScriptOptions
    attr_accessor :library, :inplace, :encoding, :transfer_type,
                  :verbose, :extension, :delay, :time, :record_separator,
                  :list

    def initialize
      self.library = []
      self.inplace = false
      self.encoding = "utf8"
      self.transfer_type = :auto
      self.verbose = false
    end

    def define_options(parser)
      parser.banner = "Usage: example.rb [options]"
      parser.separator ""
      parser.separator "Specific options:"

      # add additional options
      perform_inplace_option(parser)
      delay_execution_option(parser)
      execute_at_time_option(parser)
      specify_record_separator_option(parser)
      list_example_option(parser)
      specify_encoding_option(parser)
      optional_option_argument_with_keyword_completion_option(parser)
      boolean_verbose_option(parser)

      parser.separator ""
      parser.separator "Common options:"
      # No argument, shows at tail.  This will print an options summary.
      # Try it and see!
      parser.on_tail("-h", "--help", "Show this message") do
        puts parser
        exit
      end
      # Another typical switch to print the version.
      parser.on_tail("--version", "Show version") do
        puts Version
        exit
      end
    end

    def perform_inplace_option(parser)
      # Specifies an optional option argument
      parser.on("-i", "--inplace [EXTENSION]",
                "Edit ARGV files in place",
                "(make backup if EXTENSION supplied)") do |ext|
        self.inplace = true
        self.extension = ext || ''
        self.extension.sub!(/\A\.?(?=.)/, ".")  # Ensure extension begins with dot.
      end
    end

    def delay_execution_option(parser)
      # Cast 'delay' argument to a Float.
      parser.on("--delay N", Float, "Delay N seconds before executing") do |n|
        self.delay = n
      end
    end

    def execute_at_time_option(parser)
      # Cast 'time' argument to a Time object.
      parser.on("-t", "--time [TIME]", Time, "Begin execution at given time") do |time|
        self.time = time
      end
    end

    def specify_record_separator_option(parser)
      # Cast to octal integer.
      parser.on("-F", "--irs [OCTAL]", OptionParser::OctalInteger,
                "Specify record separator (default \\0)") do |rs|
        self.record_separator = rs
      end
    end

    def list_example_option(parser)
      # List of arguments.
      parser.on("--list x,y,z", Array, "Example 'list' of arguments") do |list|
        self.list = list
      end
    end

    def specify_encoding_option(parser)
      # Keyword completion.  We are specifying a specific set of arguments (CODES
      # and CODE_ALIASES - notice the latter is a Hash), and the user may provide
      # the shortest unambiguous text.
      code_list = (CODE_ALIASES.keys + CODES).join(', ')
      parser.on("--code CODE", CODES, CODE_ALIASES, "Select encoding",
                "(#{code_list})") do |encoding|
        self.encoding = encoding
      end
    end

    def optional_option_argument_with_keyword_completion_option(parser)
      # Optional '--type' option argument with keyword completion.
      parser.on("--type [TYPE]", [:text, :binary, :auto],
                "Select transfer type (text, binary, auto)") do |t|
        self.transfer_type = t
      end
    end

    def boolean_verbose_option(parser)
      # Boolean switch.
      parser.on("-v", "--[no-]verbose", "Run verbosely") do |v|
        self.verbose = v
      end
    end
  end

  #
  # Return a structure describing the options.
  #
  def parse(args)
    # The options specified on the command line will be collected in
    # *options*.

    @options = ScriptOptions.new
    @args = OptionParser.new do |parser|
      @options.define_options(parser)
      parser.parse!(args)
    end
    @options
  end

  attr_reader :parser, :options
end  # class OptparseExample

example = OptparseExample.new
options = example.parse(ARGV)
pp options # example.options
pp ARGV

Shell Completion

For modern shells (e.g. bash, zsh, etc.), you can use shell completion for command line options.

Further documentation

The above examples should be enough to learn how to use this class. If you have any questions, file a ticket at bugs.ruby-lang.org.

Helper module for easily defining exceptions with predefined messages.

Usage

1.

class Foo
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end

2.

module Error
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end
class Foo
  include Error
  ...
end

foo = Foo.new
foo.Fail ....

3.

module Error
  extend Exception2MessageMapper
  def_e2message ExistingExceptionClass, "message..."
  def_exception :NewExceptionClass, "message..."[, superclass]
  ...
end
class Foo
  extend Exception2MessageMapper
  include Error
  ...
end

Foo.Fail NewExceptionClass, arg...
Foo.Fail ExistingExceptionClass, arg...
No documentation available
No documentation available
No documentation available

A concrete implementation of Delegator, this class provides the means to delegate all supported method calls to the object passed into the constructor and even to change the object being delegated to at a later time with __setobj__.

class User
  def born_on
    Date.new(1989, 9, 10)
  end
end

class UserDecorator < SimpleDelegator
  def birth_year
    born_on.year
  end
end

decorated_user = UserDecorator.new(User.new)
decorated_user.birth_year  #=> 1989
decorated_user.__getobj__  #=> #<User: ...>

A SimpleDelegator instance can take advantage of the fact that SimpleDelegator is a subclass of Delegator to call super to have methods called on the object being delegated to.

class SuperArray < SimpleDelegator
  def [](*args)
    super + 1
  end
end

SuperArray.new([1])[0]  #=> 2

Here’s a simple example that takes advantage of the fact that SimpleDelegator’s delegation object can be changed at any time.

class Stats
  def initialize
    @source = SimpleDelegator.new([])
  end

  def stats(records)
    @source.__setobj__(records)

    "Elements:  #{@source.size}\n" +
    " Non-Nil:  #{@source.compact.size}\n" +
    "  Unique:  #{@source.uniq.size}\n"
  end
end

s = Stats.new
puts s.stats(%w{James Edward Gray II})
puts
puts s.stats([1, 2, 3, nil, 4, 5, 1, 2])

Prints:

Elements:  4
 Non-Nil:  4
  Unique:  4

Elements:  8
 Non-Nil:  7
  Unique:  6
Search took: 9ms  ·  Total Results: 3710