Results for: "Logger"

No documentation available

Clone internal hash.

Returns true if the set is a proper subset of the given set.

Returns the Ruby source filename and line number containing this proc or nil if this proc was not defined in Ruby (i.e. native).

Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).

Returns a Method of superclass which would be called when super is used or nil if there is no method on superclass.

Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).

Returns a Method of superclass which would be called when super is used or nil if there is no method on superclass.

Changes asynchronous interrupt timing.

interrupt means asynchronous event and corresponding procedure by Thread#raise, Thread#kill, signal trap (not supported yet) and main thread termination (if main thread terminates, then all other thread will be killed).

The given hash has pairs like ExceptionClass => :TimingSymbol. Where the ExceptionClass is the interrupt handled by the given block. The TimingSymbol can be one of the following symbols:

:immediate

Invoke interrupts immediately.

:on_blocking

Invoke interrupts while BlockingOperation.

:never

Never invoke all interrupts.

BlockingOperation means that the operation will block the calling thread, such as read and write. On CRuby implementation, BlockingOperation is any operation executed without GVL.

Masked asynchronous interrupts are delayed until they are enabled. This method is similar to sigprocmask(3).

NOTE

Asynchronous interrupts are difficult to use.

If you need to communicate between threads, please consider to use another way such as Queue.

Or use them with deep understanding about this method.

Usage

In this example, we can guard from Thread#raise exceptions.

Using the :never TimingSymbol the RuntimeError exception will always be ignored in the first block of the main thread. In the second ::handle_interrupt block we can purposefully handle RuntimeError exceptions.

th = Thread.new do
  Thread.handle_interrupt(RuntimeError => :never) {
    begin
      # You can write resource allocation code safely.
      Thread.handle_interrupt(RuntimeError => :immediate) {
        # ...
      }
    ensure
      # You can write resource deallocation code safely.
    end
  }
end
Thread.pass
# ...
th.raise "stop"

While we are ignoring the RuntimeError exception, it’s safe to write our resource allocation code. Then, the ensure block is where we can safely deallocate your resources.

Guarding from Timeout::Error

In the next example, we will guard from the Timeout::Error exception. This will help prevent from leaking resources when Timeout::Error exceptions occur during normal ensure clause. For this example we use the help of the standard library Timeout, from lib/timeout.rb

require 'timeout'
Thread.handle_interrupt(Timeout::Error => :never) {
  timeout(10){
    # Timeout::Error doesn't occur here
    Thread.handle_interrupt(Timeout::Error => :on_blocking) {
      # possible to be killed by Timeout::Error
      # while blocking operation
    }
    # Timeout::Error doesn't occur here
  }
}

In the first part of the timeout block, we can rely on Timeout::Error being ignored. Then in the Timeout::Error => :on_blocking block, any operation that will block the calling thread is susceptible to a Timeout::Error exception being raised.

Stack control settings

It’s possible to stack multiple levels of ::handle_interrupt blocks in order to control more than one ExceptionClass and TimingSymbol at a time.

Thread.handle_interrupt(FooError => :never) {
  Thread.handle_interrupt(BarError => :never) {
     # FooError and BarError are prohibited.
  }
}

Inheritance with ExceptionClass

All exceptions inherited from the ExceptionClass parameter will be considered.

Thread.handle_interrupt(Exception => :never) {
  # all exceptions inherited from Exception are prohibited.
}

Returns whether or not the asynchronous queue is empty.

Since Thread::handle_interrupt can be used to defer asynchronous events, this method can be used to determine if there are any deferred events.

If you find this method returns true, then you may finish :never blocks.

For example, the following method processes deferred asynchronous events immediately.

def Thread.kick_interrupt_immediately
  Thread.handle_interrupt(Object => :immediate) {
    Thread.pass
  }
end

If error is given, then check only for error type deferred events.

Usage

th = Thread.new{
  Thread.handle_interrupt(RuntimeError => :on_blocking){
    while true
      ...
      # reach safe point to invoke interrupt
      if Thread.pending_interrupt?
        Thread.handle_interrupt(Object => :immediate){}
      end
      ...
    end
  }
}
...
th.raise # stop thread

This example can also be written as the following, which you should use to avoid asynchronous interrupts.

flag = true
th = Thread.new{
  Thread.handle_interrupt(RuntimeError => :on_blocking){
    while true
      ...
      # reach safe point to invoke interrupt
      break if flag == false
      ...
    end
  }
}
...
flag = false # stop thread

Returns whether or not the asynchronous queue is empty for the target thread.

If error is given, then check only for error type deferred events.

See ::pending_interrupt? for more information.

Returns the execution stack for the target thread—an array containing backtrace location objects.

See Thread::Backtrace::Location for more information.

This method behaves similarly to Kernel#caller_locations except it applies to a specific thread.

Attempts to obtain the lock and returns immediately. Returns true if the lock was granted.

Returns an array of the names of global variables.

global_variables.grep /std/   #=> [:$stdin, :$stdout, :$stderr]

Returns the names of the current local variables.

fred = 1
for i in 1..10
   # ...
end
local_variables   #=> [:fred, :i]

Returns true if yield would execute a block in the current context. The iterator? form is mildly deprecated.

def try
  if block_given?
    yield
  else
    "no block"
  end
end
try                  #=> "no block"
try { "hello" }      #=> "hello"
try do "hello" end   #=> "hello"

Builds a temporary array and traverses that array in reverse order.

If no block is given, an enumerator is returned instead.

(1..3).reverse_each { |v| p v }

produces:

3
2
1

Creates an enumerator for each chunked elements. The ends of chunks are defined by pattern and the block.

If pattern === elt returns true or the block returns true for the element, the element is end of a chunk.

The === and block is called from the first element to the last element of enum.

The result enumerator yields the chunked elements as an array. So each method can be called as follows:

enum.slice_after(pattern).each { |ary| ... }
enum.slice_after { |elt| bool }.each { |ary| ... }

Other methods of the Enumerator class and Enumerable module, such as map, etc., are also usable.

For example, continuation lines (lines end with backslash) can be concatenated as follows:

lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
e = lines.slice_after(/(?<!\\)\n\z/)
p e.to_a
#=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
#=>["foo\n", "barbaz\n", "\n", "qux\n"]

Returns the last Error of the current executing Thread or nil if none

Sets the last Error of the current executing Thread to error

Returns the source file origin from the given object.

See ::trace_object_allocations for more information and examples.

Returns the original line from source for from the given object.

See ::trace_object_allocations for more information and examples.

Initiates garbage collection, unless manually disabled.

This method is defined with keyword arguments that default to true:

def GC.start(full_mark: true, immediate_sweep: true); end

Use full_mark: false to perform a minor GC. Use immediate_sweep: false to defer sweeping (use lazy sweep).

Note: These keyword arguments are implementation and version dependent. They are not guaranteed to be future-compatible, and may be ignored if the underlying implementation does not support them.

Adds aProc as a finalizer, to be called after obj was destroyed. The object ID of the obj will be passed as an argument to aProc. If aProc is a lambda or method, make sure it can be called with a single argument.

Removes all finalizers for obj.

Search took: 4ms  ·  Total Results: 2330