The Benchmark
module provides methods to measure and report the time used to execute Ruby code.
Measure the time to construct the string given by the expression "a"*1_000_000_000
:
require 'benchmark' puts Benchmark.measure { "a"*1_000_000_000 }
On my machine (OSX 10.8.3 on i5 1.7 GHz) this generates:
0.350000 0.400000 0.750000 ( 0.835234)
This report shows the user CPU time, system CPU time, the sum of the user and system CPU times, and the elapsed real time. The unit of time is seconds.
Do some experiments sequentially using the bm
method:
require 'benchmark' n = 5000000 Benchmark.bm do |x| x.report { for i in 1..n; a = "1"; end } x.report { n.times do ; a = "1"; end } x.report { 1.upto(n) do ; a = "1"; end } end
The result:
user system total real 1.010000 0.000000 1.010000 ( 1.014479) 1.000000 0.000000 1.000000 ( 0.998261) 0.980000 0.000000 0.980000 ( 0.981335)
Continuing the previous example, put a label in each report:
require 'benchmark' n = 5000000 Benchmark.bm(7) do |x| x.report("for:") { for i in 1..n; a = "1"; end } x.report("times:") { n.times do ; a = "1"; end } x.report("upto:") { 1.upto(n) do ; a = "1"; end } end
The result:
user system total real for: 1.010000 0.000000 1.010000 ( 1.015688) times: 1.000000 0.000000 1.000000 ( 1.003611) upto: 1.030000 0.000000 1.030000 ( 1.028098)
The times for some benchmarks depend on the order in which items are run. These differences are due to the cost of memory allocation and garbage collection. To avoid these discrepancies, the bmbm
method is provided. For example, to compare ways to sort an array of floats:
require 'benchmark' array = (1..1000000).map { rand } Benchmark.bmbm do |x| x.report("sort!") { array.dup.sort! } x.report("sort") { array.dup.sort } end
The result:
Rehearsal ----------------------------------------- sort! 1.490000 0.010000 1.500000 ( 1.490520) sort 1.460000 0.000000 1.460000 ( 1.463025) -------------------------------- total: 2.960000sec user system total real sort! 1.460000 0.000000 1.460000 ( 1.460465) sort 1.450000 0.010000 1.460000 ( 1.448327)
Report statistics of sequential experiments with unique labels, using the benchmark
method:
require 'benchmark' include Benchmark # we need the CAPTION and FORMAT constants n = 5000000 Benchmark.benchmark(CAPTION, 7, FORMAT, ">total:", ">avg:") do |x| tf = x.report("for:") { for i in 1..n; a = "1"; end } tt = x.report("times:") { n.times do ; a = "1"; end } tu = x.report("upto:") { 1.upto(n) do ; a = "1"; end } [tf+tt+tu, (tf+tt+tu)/3] end
The result:
user system total real for: 0.950000 0.000000 0.950000 ( 0.952039) times: 0.980000 0.000000 0.980000 ( 0.984938) upto: 0.950000 0.000000 0.950000 ( 0.946787) >total: 2.880000 0.000000 2.880000 ( 2.883764) >avg: 0.960000 0.000000 0.960000 ( 0.961255)
The Forwardable module provides delegation of specified methods to a designated object, using the methods def_delegator
and def_delegators
.
For example, say you have a class RecordCollection which contains an array @records
. You could provide the lookup method record_number(), which simply calls [] on the @records
array, like this:
require 'forwardable' class RecordCollection attr_accessor :records extend Forwardable def_delegator :@records, :[], :record_number end
We can use the lookup method like so:
r = RecordCollection.new r.records = [4,5,6] r.record_number(0) # => 4
Further, if you wish to provide the methods size, <<, and map, all of which delegate to @records, this is how you can do it:
class RecordCollection # re-open RecordCollection class def_delegators :@records, :size, :<<, :map end r = RecordCollection.new r.records = [1,2,3] r.record_number(0) # => 1 r.size # => 3 r << 4 # => [1, 2, 3, 4] r.map { |x| x * 2 } # => [2, 4, 6, 8]
You can even extend regular objects with Forwardable.
my_hash = Hash.new my_hash.extend Forwardable # prepare object for delegation my_hash.def_delegator "STDOUT", "puts" # add delegation for STDOUT.puts() my_hash.puts "Howdy!"
We want to rely on what has come before obviously, but with delegation we can take just the methods we need and even rename them as appropriate. In many cases this is preferable to inheritance, which gives us the entire old interface, even if much of it isn’t needed.
class Queue extend Forwardable def initialize @q = [ ] # prepare delegate object end # setup preferred interface, enq() and deq()... def_delegator :@q, :push, :enq def_delegator :@q, :shift, :deq # support some general Array methods that fit Queues well def_delegators :@q, :clear, :first, :push, :shift, :size end q = Queue.new q.enq 1, 2, 3, 4, 5 q.push 6 q.shift # => 1 while q.size > 0 puts q.deq end q.enq "Ruby", "Perl", "Python" puts q.first q.clear puts q.first
This should output:
2 3 4 5 6 Ruby nil
Be advised, RDoc
will not detect delegated methods.
forwardable.rb
provides single-method delegation via the def_delegator
and def_delegators
methods. For full-class delegation via DelegateClass, see delegate.rb
.
SingleForwardable
can be used to setup delegation at the object level as well.
printer = String.new printer.extend SingleForwardable # prepare object for delegation printer.def_delegator "STDOUT", "puts" # add delegation for STDOUT.puts() printer.puts "Howdy!"
Also, SingleForwardable
can be used to set up delegation for a Class
or Module
.
class Implementation def self.service puts "serviced!" end end module Facade extend SingleForwardable def_delegator :Implementation, :service end Facade.service #=> serviced!
If you want to use both Forwardable and SingleForwardable
, you can use methods def_instance_delegator and def_single_delegator
, etc.
This library is an interface to secure random number generators which are suitable for generating session keys in HTTP cookies, etc.
You can use this library in your application by requiring it:
require 'securerandom'
It supports the following secure random number generators:
openssl
/dev/urandom
Win32
Generate random hexadecimal strings:
require 'securerandom' SecureRandom.hex(10) #=> "52750b30ffbc7de3b362" SecureRandom.hex(10) #=> "92b15d6c8dc4beb5f559" SecureRandom.hex(13) #=> "39b290146bea6ce975c37cfc23"
Generate random base64 strings:
SecureRandom.base64(10) #=> "EcmTPZwWRAozdA==" SecureRandom.base64(10) #=> "KO1nIU+p9DKxGg==" SecureRandom.base64(12) #=> "7kJSM/MzBJI+75j8"
Generate random binary strings:
SecureRandom.random_bytes(10) #=> "\016\t{\370g\310pbr\301" SecureRandom.random_bytes(10) #=> "\323U\030TO\234\357\020\a\337"
Generate alphanumeric strings:
SecureRandom.alphanumeric(10) #=> "S8baxMJnPl" SecureRandom.alphanumeric(10) #=> "aOxAg8BAJe"
Generate UUIDs:
SecureRandom.uuid #=> "2d931510-d99f-494a-8c67-87feb05e1594" SecureRandom.uuid #=> "bad85eb9-0713-4da7-8d36-07a8e4b00eab"
The marshaling library converts collections of Ruby objects into a byte stream, allowing them to be stored outside the currently active script. This data may subsequently be read and the original objects reconstituted.
Marshaled data has major and minor version numbers stored along with the object information. In normal use, marshaling can only load data written with the same major version number and an equal or lower minor version number. If Ruby’s “verbose” flag is set (normally using -d, -v, -w, or –verbose) the major and minor numbers must match exactly. Marshal
versioning is independent of Ruby’s version numbers. You can extract the version by reading the first two bytes of marshaled data.
str = Marshal.dump("thing") RUBY_VERSION #=> "1.9.0" str[0].ord #=> 4 str[1].ord #=> 8
Some objects cannot be dumped: if the objects to be dumped include bindings, procedure or method objects, instances of class IO
, or singleton objects, a TypeError
will be raised.
If your class has special serialization needs (for example, if you want to serialize in some specific format), or if it contains objects that would otherwise not be serializable, you can implement your own serialization strategy.
There are two methods of doing this, your object can define either marshal_dump and marshal_load or _dump and _load. marshal_dump will take precedence over _dump if both are defined. marshal_dump may result in smaller Marshal
strings.
By design, Marshal.load
can deserialize almost any class loaded into the Ruby process. In many cases this can lead to remote code execution if the Marshal
data is loaded from an untrusted source.
As a result, Marshal.load
is not suitable as a general purpose serialization format and you should never unmarshal user supplied input or other untrusted data.
If you need to deserialize untrusted data, use JSON
or another serialization format that is only able to load simple, ‘primitive’ types such as String
, Array
, Hash
, etc. Never allow user input to specify arbitrary types to deserialize into.
When dumping an object the method marshal_dump will be called. marshal_dump must return a result containing the information necessary for marshal_load to reconstitute the object. The result can be any object.
When loading an object dumped using marshal_dump the object is first allocated then marshal_load is called with the result from marshal_dump. marshal_load must recreate the object from the information in the result.
Example:
class MyObj def initialize name, version, data @name = name @version = version @data = data end def marshal_dump [@name, @version] end def marshal_load array @name, @version = array end end
Use _dump and _load when you need to allocate the object you’re restoring yourself.
When dumping an object the instance method _dump is called with an Integer
which indicates the maximum depth of objects to dump (a value of -1 implies that you should disable depth checking). _dump must return a String
containing the information necessary to reconstitute the object.
The class method _load should take a String
and use it to return an object of the same class.
Example:
class MyObj def initialize name, version, data @name = name @version = version @data = data end def _dump level [@name, @version].join ':' end def self._load args new(*args.split(':')) end end
Since Marshal.dump
outputs a string you can have _dump return a Marshal
string which is Marshal.loaded in _load for complex objects.
WIN32OLE_VARIABLE
objects represent OLE variable information.
WIN32OLE_VARIANT
objects represents OLE variant.
Win32OLE converts Ruby object into OLE variant automatically when invoking OLE methods. If OLE method requires the argument which is different from the variant by automatic conversion of Win32OLE, you can convert the specfied variant type by using WIN32OLE_VARIANT
class.
param = WIN32OLE_VARIANT.new(10, WIN32OLE::VARIANT::VT_R4) oleobj.method(param)
WIN32OLE_VARIANT
does not support VT_RECORD variant. Use WIN32OLE_RECORD
class instead of WIN32OLE_VARIANT
if the VT_RECORD variant is needed.
This is the generic exception for OpenSSL::Engine
related errors
Error
raised when a response from the server is non-parseable.
Generates a index files for use as a gem server.
See ‘gem help generate_index`
Raised when a tar file is corrupt
TarReader
reads tar files and allows iteration over their items
This is the JSON
generator implemented as a C extension. It can be configured to be used by setting
JSON.generator = JSON::Ext::Generator
with the method generator= in JSON
.
Enumerator::ArithmeticSequence
is a subclass of Enumerator
, that is a representation of sequences of numbers with common difference. Instances of this class can be generated by the Range#step
and Numeric#step
methods.
Raised by Encoding
and String
methods when the source encoding is incompatible with the target encoding.