A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
Complex
object can be created as literal, and also by using Kernel#Complex
, Complex::rect
, Complex::polar
or to_c
method.
2+1i #=> (2+1i) Complex(1) #=> (1+0i) Complex(2, 3) #=> (2+3i) Complex.polar(2, 3) #=> (-1.9799849932008908+0.2822400161197344i) 3.to_c #=> (3+0i)
You can also create complex object from floating-point numbers or strings.
Complex(0.3) #=> (0.3+0i) Complex('0.3-0.5i') #=> (0.3-0.5i) Complex('2/3+3/4i') #=> ((2/3)+(3/4)*i) Complex('1@2') #=> (-0.4161468365471424+0.9092974268256817i) 0.3.to_c #=> (0.3+0i) '0.3-0.5i'.to_c #=> (0.3-0.5i) '2/3+3/4i'.to_c #=> ((2/3)+(3/4)*i) '1@2'.to_c #=> (-0.4161468365471424+0.9092974268256817i)
A complex object is either an exact or an inexact number.
Complex(1, 1) / 2 #=> ((1/2)+(1/2)*i) Complex(1, 1) / 2.0 #=> (0.5+0.5i)
A File
is an abstraction of any file object accessible by the program and is closely associated with class IO
. File
includes the methods of module FileTest
as class methods, allowing you to write (for example) File.exist?("foo")
.
In the description of File
methods, permission bits are a platform-specific set of bits that indicate permissions of a file. On Unix-based systems, permissions are viewed as a set of three octets, for the owner, the group, and the rest of the world. For each of these entities, permissions may be set to read, write, or execute the file:
The permission bits 0644
(in octal) would thus be interpreted as read/write for owner, and read-only for group and other. Higher-order bits may also be used to indicate the type of file (plain, directory, pipe, socket, and so on) and various other special features. If the permissions are for a directory, the meaning of the execute bit changes; when set the directory can be searched.
On non-Posix operating systems, there may be only the ability to make a file read-only or read-write. In this case, the remaining permission bits will be synthesized to resemble typical values. For instance, on Windows NT the default permission bits are 0644
, which means read/write for owner, read-only for all others. The only change that can be made is to make the file read-only, which is reported as 0444
.
Various constants for the methods in File
can be found in File::Constants
.
Raised when a method is called on a receiver which doesn’t have it defined and also fails to respond with method_missing
.
"hello".to_ary
raises the exception:
NoMethodError: undefined method `to_ary' for "hello":String
Raised when memory allocation fails.
SystemCallError
is the base class for all low-level platform-dependent errors.
The errors available on the current platform are subclasses of SystemCallError
and are defined in the Errno
module.
File.open("does/not/exist")
raises the exception:
Errno::ENOENT: No such file or directory - does/not/exist
WIN32OLE
objects represent OLE Automation object in Ruby.
By using WIN32OLE
, you can access OLE server like VBScript.
Here is sample script.
require 'win32ole' excel = WIN32OLE.new('Excel.Application') excel.visible = true workbook = excel.Workbooks.Add(); worksheet = workbook.Worksheets(1); worksheet.Range("A1:D1").value = ["North","South","East","West"]; worksheet.Range("A2:B2").value = [5.2, 10]; worksheet.Range("C2").value = 8; worksheet.Range("D2").value = 20; range = worksheet.Range("A1:D2"); range.select chart = workbook.Charts.Add; workbook.saved = true; excel.ActiveWorkbook.Close(0); excel.Quit();
Unfortunately, Win32OLE doesn’t support the argument passed by reference directly. Instead, Win32OLE provides WIN32OLE::ARGV
or WIN32OLE_VARIANT
object. If you want to get the result value of argument passed by reference, you can use WIN32OLE::ARGV
or WIN32OLE_VARIANT
.
oleobj.method(arg1, arg2, refargv3) puts WIN32OLE::ARGV[2] # the value of refargv3 after called oleobj.method
or
refargv3 = WIN32OLE_VARIANT.new(XXX, WIN32OLE::VARIANT::VT_BYREF|WIN32OLE::VARIANT::VT_XXX) oleobj.method(arg1, arg2, refargv3) p refargv3.value # the value of refargv3 after called oleobj.method.
OLEProperty
helper class of Property with arguments.
This library provides three different ways to delegate method calls to an object. The easiest to use is SimpleDelegator
. Pass an object to the constructor and all methods supported by the object will be delegated. This object can be changed later.
Going a step further, the top level DelegateClass method allows you to easily setup delegation through class inheritance. This is considerably more flexible and thus probably the most common use for this library.
Finally, if you need full control over the delegation scheme, you can inherit from the abstract class Delegator
and customize as needed. (If you find yourself needing this control, have a look at Forwardable which is also in the standard library. It may suit your needs better.)
SimpleDelegator’s implementation serves as a nice example of the use of Delegator:
class SimpleDelegator < Delegator def __getobj__ @delegate_sd_obj # return object we are delegating to, required end def __setobj__(obj) @delegate_sd_obj = obj # change delegation object, # a feature we're providing end end
Be advised, RDoc
will not detect delegated methods.
A utility class for managing temporary files. When you create a Tempfile
object, it will create a temporary file with a unique filename. A Tempfile
objects behaves just like a File
object, and you can perform all the usual file operations on it: reading data, writing data, changing its permissions, etc. So although this class does not explicitly document all instance methods supported by File
, you can in fact call any File
instance method on a Tempfile
object.
require 'tempfile' file = Tempfile.new('foo') file.path # => A unique filename in the OS's temp directory, # e.g.: "/tmp/foo.24722.0" # This filename contains 'foo' in its basename. file.write("hello world") file.rewind file.read # => "hello world" file.close file.unlink # deletes the temp file
When a Tempfile
object is garbage collected, or when the Ruby interpreter exits, its associated temporary file is automatically deleted. This means that’s it’s unnecessary to explicitly delete a Tempfile
after use, though it’s good practice to do so: not explicitly deleting unused Tempfiles can potentially leave behind large amounts of tempfiles on the filesystem until they’re garbage collected. The existence of these temp files can make it harder to determine a new Tempfile
filename.
Therefore, one should always call unlink
or close in an ensure block, like this:
file = Tempfile.new('foo') begin # ...do something with file... ensure file.close file.unlink # deletes the temp file end
On POSIX systems, it’s possible to unlink a file right after creating it, and before closing it. This removes the filesystem entry without closing the file handle, so it ensures that only the processes that already had the file handle open can access the file’s contents. It’s strongly recommended that you do this if you do not want any other processes to be able to read from or write to the Tempfile
, and you do not need to know the Tempfile’s filename either.
For example, a practical use case for unlink-after-creation would be this: you need a large byte buffer that’s too large to comfortably fit in RAM, e.g. when you’re writing a web server and you want to buffer the client’s file upload data.
Please refer to unlink
for more information and a code example.
Tempfile’s filename picking method is both thread-safe and inter-process-safe: it guarantees that no other threads or processes will pick the same filename.
Tempfile
itself however may not be entirely thread-safe. If you access the same Tempfile
object from multiple threads then you should protect it with a mutex.
Method
objects are created by Object#method
, and are associated with a particular object (not just with a class). They may be used to invoke the method within the object, and as a block associated with an iterator. They may also be unbound from one object (creating an UnboundMethod
) and bound to another.
class Thing def square(n) n*n end end thing = Thing.new meth = thing.method(:square) meth.call(9) #=> 81 [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3 require 'date' %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>]
The Comparable
mixin is used by classes whose objects may be ordered. The class must define the <=>
operator, which compares the receiver against another object, returning -1, 0, or +1 depending on whether the receiver is less than, equal to, or greater than the other object. If the other object is not comparable then the <=>
operator should return nil. Comparable
uses <=>
to implement the conventional comparison operators (<
, <=
, ==
, >=
, and >
) and the method between?
.
class SizeMatters include Comparable attr :str def <=>(other) str.size <=> other.str.size end def initialize(str) @str = str end def inspect @str end end s1 = SizeMatters.new("Z") s2 = SizeMatters.new("YY") s3 = SizeMatters.new("XXX") s4 = SizeMatters.new("WWWW") s5 = SizeMatters.new("VVVVV") s1 < s2 #=> true s4.between?(s1, s3) #=> false s4.between?(s3, s5) #=> true [ s3, s2, s5, s4, s1 ].sort #=> [Z, YY, XXX, WWWW, VVVVV]
The Enumerable
mixin provides collection classes with several traversal and searching methods, and with the ability to sort. The class must provide a method each
, which yields successive members of the collection. If Enumerable#max
, #min
, or #sort
is used, the objects in the collection must also implement a meaningful <=>
operator, as these methods rely on an ordering between members of the collection.
A libffi wrapper for Ruby.
Fiddle
is an extension to translate a foreign function interface (FFI) with ruby.
It wraps libffi, a popular C library which provides a portable interface that allows code written in one language to call code written in another language.
Here we will use Fiddle::Function
to wrap floor(3) from libm
require 'fiddle' libm = Fiddle.dlopen('/lib/libm.so.6') floor = Fiddle::Function.new( libm['floor'], [Fiddle::TYPE_DOUBLE], Fiddle::TYPE_DOUBLE ) puts floor.call(3.14159) #=> 3.0
FileTest
implements file test operations similar to those used in File::Stat
. It exists as a standalone module, and its methods are also insinuated into the File
class. (Note that this is not done by inclusion: the interpreter cheats).
The Forwardable module provides delegation of specified methods to a designated object, using the methods def_delegator
and def_delegators
.
For example, say you have a class RecordCollection which contains an array @records
. You could provide the lookup method record_number(), which simply calls [] on the @records
array, like this:
require 'forwardable' class RecordCollection attr_accessor :records extend Forwardable def_delegator :@records, :[], :record_number end
We can use the lookup method like so:
r = RecordCollection.new r.records = [4,5,6] r.record_number(0) # => 4
Further, if you wish to provide the methods size, <<, and map, all of which delegate to @records, this is how you can do it:
class RecordCollection # re-open RecordCollection class def_delegators :@records, :size, :<<, :map end r = RecordCollection.new r.records = [1,2,3] r.record_number(0) # => 1 r.size # => 3 r << 4 # => [1, 2, 3, 4] r.map { |x| x * 2 } # => [2, 4, 6, 8]
You can even extend regular objects with Forwardable.
my_hash = Hash.new my_hash.extend Forwardable # prepare object for delegation my_hash.def_delegator "STDOUT", "puts" # add delegation for STDOUT.puts() my_hash.puts "Howdy!"
We want to rely on what has come before obviously, but with delegation we can take just the methods we need and even rename them as appropriate. In many cases this is preferable to inheritance, which gives us the entire old interface, even if much of it isn’t needed.
class Queue extend Forwardable def initialize @q = [ ] # prepare delegate object end # setup preferred interface, enq() and deq()... def_delegator :@q, :push, :enq def_delegator :@q, :shift, :deq # support some general Array methods that fit Queues well def_delegators :@q, :clear, :first, :push, :shift, :size end q = Queue.new q.enq 1, 2, 3, 4, 5 q.push 6 q.shift # => 1 while q.size > 0 puts q.deq end q.enq "Ruby", "Perl", "Python" puts q.first q.clear puts q.first
This should output:
2 3 4 5 6 Ruby nil
Be advised, RDoc
will not detect delegated methods.
forwardable.rb
provides single-method delegation via the def_delegator
and def_delegators
methods. For full-class delegation via DelegateClass, see delegate.rb
.
mkmf.rb is used by Ruby C extensions to generate a Makefile which will correctly compile and link the C extension to Ruby and a third-party library.
The Observer pattern (also known as publish/subscribe) provides a simple mechanism for one object to inform a set of interested third-party objects when its state changes.
The notifying class mixes in the Observable
module, which provides the methods for managing the associated observer objects.
The observable object must:
assert that it has #changed
call #notify_observers
An observer subscribes to updates using Observable#add_observer
, which also specifies the method called via notify_observers
. The default method for notify_observers
is update.
The following example demonstrates this nicely. A Ticker
, when run, continually receives the stock Price
for its @symbol
. A Warner
is a general observer of the price, and two warners are demonstrated, a WarnLow
and a WarnHigh
, which print a warning if the price is below or above their set limits, respectively.
The update
callback allows the warners to run without being explicitly called. The system is set up with the Ticker
and several observers, and the observers do their duty without the top-level code having to interfere.
Note that the contract between publisher and subscriber (observable and observer) is not declared or enforced. The Ticker
publishes a time and a price, and the warners receive that. But if you don’t ensure that your contracts are correct, nothing else can warn you.
require "observer" class Ticker ### Periodically fetch a stock price. include Observable def initialize(symbol) @symbol = symbol end def run last_price = nil loop do price = Price.fetch(@symbol) print "Current price: #{price}\n" if price != last_price changed # notify observers last_price = price notify_observers(Time.now, price) end sleep 1 end end end class Price ### A mock class to fetch a stock price (60 - 140). def self.fetch(symbol) 60 + rand(80) end end class Warner ### An abstract observer of Ticker objects. def initialize(ticker, limit) @limit = limit ticker.add_observer(self) end end class WarnLow < Warner def update(time, price) # callback for observer if price < @limit print "--- #{time.to_s}: Price below #@limit: #{price}\n" end end end class WarnHigh < Warner def update(time, price) # callback for observer if price > @limit print "+++ #{time.to_s}: Price above #@limit: #{price}\n" end end end ticker = Ticker.new("MSFT") WarnLow.new(ticker, 80) WarnHigh.new(ticker, 120) ticker.run
Produces:
Current price: 83 Current price: 75 --- Sun Jun 09 00:10:25 CDT 2002: Price below 80: 75 Current price: 90 Current price: 134 +++ Sun Jun 09 00:10:25 CDT 2002: Price above 120: 134 Current price: 134 Current price: 112 Current price: 79 --- Sun Jun 09 00:10:25 CDT 2002: Price below 80: 79
Profile provides a way to Profile your Ruby application.
Profiling your program is a way of determining which methods are called and how long each method takes to complete. This way you can detect which methods are possible bottlenecks.
Profiling your program will slow down your execution time considerably, so activate it only when you need it. Don’t confuse benchmarking with profiling.
There are two ways to activate Profiling:
Run your Ruby script with -rprofile
:
ruby -rprofile example.rb
If you’re profiling an executable in your $PATH
you can use ruby -S
:
ruby -rprofile -S some_executable
Just require ‘profile’:
require 'profile' def slow_method 5000.times do 9999999999999999*999999999 end end def fast_method 5000.times do 9999999999999999+999999999 end end slow_method fast_method
The output in both cases is a report when the execution is over:
ruby -rprofile example.rb % cumulative self self total time seconds seconds calls ms/call ms/call name 68.42 0.13 0.13 2 65.00 95.00 Integer#times 15.79 0.16 0.03 5000 0.01 0.01 Fixnum#* 15.79 0.19 0.03 5000 0.01 0.01 Fixnum#+ 0.00 0.19 0.00 2 0.00 0.00 IO#set_encoding 0.00 0.19 0.00 1 0.00 100.00 Object#slow_method 0.00 0.19 0.00 2 0.00 0.00 Module#method_added 0.00 0.19 0.00 1 0.00 90.00 Object#fast_method 0.00 0.19 0.00 1 0.00 190.00 #toplevel